Foundations of Finance Theory: Course Notes

Richard C. Stapleton¹

¹Manchester Business School

1 Mean-variance portfolio analysis and the CAPM

Portfolio Demand and the CAPM Assume

- j = 1, 2, ..., J firms in the economy, with N_j shares outstanding. 100% equity. Cash flow, x_j at time t = 1
- ullet i=1,2,...,I investors with wealth $w_{0,i}$ at t=0 and utility

$$u_i = u_i[E(w_i), var(w_i)],$$

where $w_i \equiv w_{1,i}$ is wealth at time t=1

- Investors have homogeneous expectations
- Investors can borrow or lend at risk-free rate of interest r_f
- No taxes, transactions costs

Definitions

Let:

• $S_j = s_j N_j$ be market capitalisation of j, s_j is price of 1 share

 $ullet n_{i,j}$ shares bought by investor i in firm j

$$lpha_{i,j} = rac{n_{i,j}}{N_j}$$

- ullet B_i is bond investment of investor i
- $ullet \sigma_{j,j} = var(x_j)$
- $ullet \ \sigma_{j,k} = covar(x_j,x_k)$

Hence

$$w_i = \sum_j \alpha_{i,j} x_j + B_i (1 + r_f) \quad (1)$$

where

$$B_i = w_{0,i} - \sum\limits_j lpha_{i,j} S_j$$

Portfolio Demand

Investor i chooses shares $n_{i,j}$ to maximise utility:

$$max u_i = u_i[E(w_i), var(w_i)]$$
 (2)

where

$$w_i = \sum\limits_j lpha_{i,j} x_j + B_i (1 + r_f)$$

subject to

$$B_i + \sum\limits_j lpha_{i,j} S_j = w_{0,i}$$

Step 1: Compute Portfolio Mean and Variance

Mean:

$$E(w_i) = w_{0,i}(1+r_f) + \sum_{j} \alpha_{i,j} [E(x_j) - S_j(1+r_f)]$$
(3)

Variance:

$$egin{array}{ll} var(w_i) &= var(\sum\limits_{j} lpha_{i,j} x_j) \ &= lpha_{i,1}^2 \sigma_{1,1} + 2lpha_{i,1} lpha_{i,2} \sigma_{1,2} + ... \ &+ 2lpha_{i,1} lpha_{i,j} \sigma_{1,j} + lpha_{i,2}^2 \sigma_{2,2} + ... \ &+ lpha_{i,j}^2 \sigma_{j,j} \end{array}$$

Hence

$$\frac{\partial E(w_i)}{\partial \alpha_{i,j}} = E(x_j) - S_j(1 + r_f) \tag{5}$$

$$\frac{\partial var(w_i)}{\partial \alpha_{i,j}} = 2\alpha_{i,1}\sigma_{j,1} + 2\alpha_{i,2}\sigma_{j,2} + \dots + 2\alpha_{i,j}\sigma_{j,j} + \dots \tag{6}$$

Step 2: First Order Conditions

Hence

$$egin{aligned} rac{\partial u_i}{\partial lpha_{i,j}} &= rac{\partial u_i}{\partial E(w_i)} rac{\partial E(w_i)}{\partial lpha_{i,j}} \ &+ rac{\partial u_i}{\partial var(w_i)} rac{\partial var(w_i)}{\partial lpha_{i,j}} = 0, orall j \end{aligned}$$

or

$$rac{-rac{\partial u_i}{\partial E(w_i)}}{rac{\partial u_i}{\partial var(w_i)}}rac{\partial E(w_i)}{\partial lpha_{i,j}}=rac{\partial var(w_i)}{\partial lpha_{i,j}}, orall j$$

Substituting (5) and (6)

$$egin{aligned} \lambda_i [E(x_j) - S_j (1 + r_f)] &= lpha_{i,1} \sigma_{j,1} + lpha_{i,2} \sigma_{j,2} + ... \ &+ lpha_{i,j} \sigma_{j,j} + ..., orall j \end{aligned}$$

where

$$\lambda_i = rac{-rac{\partial u_i}{\partial Ew_i}}{2rac{\partial u_i}{\partial var(w_i)}}$$

Step 3: Optimal Stock Proportions

This set of simultaneous equations can be written in matrix form:

$$\lambda_i [E(x) - S(1 + r_f)] = A lpha_i$$

where

$$E(x) = egin{pmatrix} E(x_1) \ E(x_2) \ dots \ E(x_J) \end{pmatrix}, S = egin{pmatrix} S_1 \ S_2 \ dots \ S_J \end{pmatrix}, lpha_i = egin{pmatrix} lpha_{i,1} \ lpha_{i,2} \ dots \ lpha_{i,J} \end{pmatrix}$$

and

$$A = egin{pmatrix} \sigma_{1,1}, \sigma_{1,2}, ..., \sigma_{1,J} \ \sigma_{2,1}, \sigma_{2,2}, ..., \sigma_{2,J} \ \sigma_{3,1}, \sigma_{3,2}, ..., \sigma_{3,J} \ . & . & . \ \sigma_{J,1}, \sigma_{J,2}, ..., \sigma_{J,J} \end{pmatrix}$$

The solution is

$$\alpha_i = \lambda_i A^{-1} [E(x) - S(1 + r_f)] \qquad (7)$$

(7) proves the mutual fund Separation Theorem

Step 4: Market Equilibrium In equilibrium all stocks must be held, or

$$\sum\limits_{i}lpha_{i,j}=1,orall j$$

Summing (7) over i

$$\sum\limits_{i}lpha_{i}=\sum\limits_{i}oldsymbol{\lambda}_{i}A^{-1}[E(x)-S(1+r_{f})]=\overline{1},$$

where

$$\overline{f 1}=egin{pmatrix} f 1\ f 1\ f \cdot\ f 1 \end{pmatrix}$$

Solving for S

$$S = \frac{1}{1 + r_f} \left(E(x) - \frac{A\overline{1}}{\lambda} \right),$$
 (8)

where

$$A\overline{1} = egin{pmatrix} \sigma_{1,1} + \sigma_{1,2} + \sigma_{1,3} + ... + \sigma_{1,J} \ \sigma_{2,1} + \sigma_{2,2} + \sigma_{2,3} + ... + \sigma_{2,J} \ ... & .. \ \sigma_{J,1} + \sigma_{J,2} + \sigma_{J,3} + ... + \sigma_{J,J} \end{pmatrix}$$

Step 5: The CAPM

For stock 1:

$$egin{aligned} \sigma_{1,1} \, + \, \sigma_{1,2} + \sigma_{1,3} + ... + \sigma_{1,J} &= cov(x_1,x_1) \ + \, cov(x_1,x_2) + ... + cov(x_1,x_J) \ &= \, cov\left(x_1,\sum\limits_{j=1}^J x_j
ight) \ &= \, cov\left(x_1,x_m
ight), \end{aligned}$$

where

$$x_m = \sum\limits_{j=1}^J x_j$$

is the market cash flow.

$$S_{j} = \frac{1}{1 + r_{f}} \left[Ex_{j} - \frac{1}{\lambda} cov(x_{j}, x_{m}) \right], \tag{9}$$

Step 6: The CAPM: Expected Return Divide (9) by S_i ,

$$1 = rac{1}{1 + r_f} iggl[rac{E(x_j)}{S_j} - rac{1}{\lambda} cov \left(rac{x_j}{S_j}, x_m
ight) iggr],$$

Define the return:

$$egin{aligned} r_j &= rac{x_j - S_j}{S_j}, \ 1 &= rac{1}{1 + r_f} iggl[E(r_j) + 1 - rac{S_m}{\lambda} cov \left(rac{x_j}{S_j}, rac{x_m}{S_m}
ight) iggr], \end{aligned}$$

$$E(r_j) = r_f + rac{S_m var(r_m)}{\lambda} rac{cov(r_j, r_m)}{var(r_m)},
onumber \ E(r_j) = r_f + \lambda' eta_j.$$

Step 7: The CAPM: Closed Form Solution

CAPM holds also for portfolios of shares If CAPM holds for the market portfolio:

$$E(r_m) = r_f + \lambda' eta_m.$$

But, $\beta_m = 1$, hence

$$E(r_m) = r_f + \lambda'.$$

The market risk premium:

$$E(r_m) - r_f = \lambda'.$$

and hence

$$E(r_j) = r_f + [E(r_m) - r_f]\beta_j$$
.

Optimal Portfolios: Numerical Example

Mean-variance portfolio analysis and the CAPM

Data: Stocks

\boldsymbol{j}	$E(x_j)$	S_{j}	σ_{j}	N_{j}
1	9	7.5	1.5	150
2	38	34	2	400

$$ho_{1,2}=0.5$$

Data: Investors

i	$oldsymbol{\lambda}_i$	$w_{0,i}$
1	0.3	10

$$r_f=0.05$$

Optimal portfolio

Step 1: Compute portfolio mean and variance

Mean

$$E(x_j) - S_j(1+r_f) \ j = 1: \; 9-7.5(1.05) = 1.125 \ j = 2: \; 38-34(1.05) = 2.3 \ E(w_i) = 10(1.05) + lpha_{i,1}(1.125) + lpha_{i,2}(2.3) \ rac{\partial E(w_i)}{\partial lpha_{i,1}} = 1.125 \ rac{\partial E(w_i)}{\partial lpha_{i,2}} = 2.3$$

Variance

$$var(w_i) = lpha_{i,1}^2 \sigma_{1,1} + 2lpha_{i,1}lpha_{i,2}\sigma_{1,2} + lpha_{i,2}^2\sigma_{2,2}$$

$$\sigma_{1,2} = \sigma_1 \sigma_2 \rho_{1,2} = 1.5(2)(0.5) = 1.5$$

$$egin{array}{ll} \sigma_{1,1} &= \sigma_1^2 = 1.5^2 = 2.25 \ \sigma_{2,2} &= \sigma_2^2 = 2^2 = 4 \end{array}$$

$$egin{aligned} var(w_i) &= lpha_{i,1}^2 2.25 + 2lpha_{i,1}lpha_{i,2} 1.5 + lpha_{i,2}^2 4 \ &rac{\partial var(w_i)}{\partial lpha_{i,1}} = 2lpha_{i,1} 2.25 + 2lpha_{i,2} 1.5 \ &rac{\partial var(w_i)}{\partial lpha_{i,2}} = 2lpha_{i,1} 1.5 + 2lpha_{i,2} 4 \end{aligned}$$

Step 2: First order conditions

$$\lambda_i[E(x_j) - S_j(1 + r_f)] = \sigma_{j,1} lpha_{i,1} + \sigma_{j,2} lpha_{i,2}$$

$$j=1:0.3(1.125)=2.25lpha_{i,1}+1.5lpha_{i,2} \ j=2:0.3(2.3)=1.5lpha_{i,1}+4lpha_{i,2}$$

Step 3: Matrix form

$$egin{aligned} \lambda_i[E(x)-S(1+r_f)]&=Alpha_i\ A&=\left(egin{aligned} 2.25 & 1.5\ 1.5 & 4 \end{aligned}
ight) \end{aligned}$$

$$egin{aligned} 0.3 inom{1.125}{2.3} = inom{2.25}{1.5} & 1.5 \ 1.5 & 4 \end{pmatrix} inom{lpha_{i,1}}{lpha_{i,2}} \ inom{0.3375}{0.69} = inom{2.25}{1.5} & 1.5 \ 1.5 & 4 \end{pmatrix} inom{lpha_{i,1}}{lpha_{i,2}} \end{aligned}$$

Hence

$$egin{pmatrix} egin{pmatrix} oldsymbol{lpha_{i,1}} \ oldsymbol{lpha_{i,2}} \end{pmatrix} = egin{pmatrix} \mathbf{2.25} & \mathbf{1.5} \ \mathbf{1.5} & \mathbf{4} \end{pmatrix}^{-1} egin{pmatrix} \mathbf{0.3375} \ \mathbf{0.69} \end{pmatrix}$$

$$egin{pmatrix} lpha_{i,1} \ lpha_{i,2} \end{pmatrix} = egin{pmatrix} 0.5926 & -0.222 \ -0.222 & 0.333 \end{pmatrix} egin{pmatrix} 0.3375 \ 0.69 \end{pmatrix}$$

$$egin{pmatrix} oldsymbol{lpha_{i,1}} oldsymbol{lpha_{i,2}} = egin{pmatrix} oldsymbol{0.0467} \ oldsymbol{0.155} \end{pmatrix}$$

Optimal Share allocation

$$n_{i,1} = lpha_{i,1}(N_1) \ n_{i,1} = 0.0467(150) = 7$$

$$n_{i,2} = lpha_{i,2}(N_2) \ n_{i,2} = 0.155(400) = 62$$

Stock price

$$s_1 = 7.5/150 = 0.05$$

 $s_2 = 34/400 = 0.085$

Investment:

stocks

$$n_1 s_1 + n_2 s_2 \ 7(0.05) + 62(0.085) = 5.62$$

bonds

$$w - 5.62 = 4.38$$

total 10.00

2 Asset pricing: a complete markets model

Financial Theory

Assets:

Value of Cash Flows

CAPM

Options: Multi-period

Black-Scholes Models

Forward / Futures

Prices: Assets/Options

A General Model Initial setup and key assumptions

- 1. Assume a single period from t to t+T.
- 2. Assume forward parity holds.
- 3. Assume that there are a finite number of states of the world at time t+T

A state-contingent claim on state i is defined as a security which pays \$1 if and only if state i occurs.

- 4. Assume markets are complete.
- 5. Assume homogeneous expectations
- 6. Assume that the price of a portfolio or package of contingent claims is equal to the sum of the prices of the individual state-contingent claims.

1: Single Period Model

- ullet Nothing happens between t and t+T
- ullet Dividends are paid either at t or at t+T
- ullet No trading between t and t+T

2: Forward Parity

Assume no dividend paid between t and t+T

Synthetic forward strategy:

- 1. Borrow S_t (price of stock)
- 2. Buy stock
- 3. Repay $S_t(1+r)$ at t+T

 \bullet Net cash flow at t is zero.

- ullet Net cash at t+T is $S_{t+T}-S_t(1+r)$
- $S_t(1+r)$ must be forward price

$$ullet$$
 $rac{1}{(1+r)}=B_{t,t+T}$

$$ullet$$
 $F_{t,t+T}=rac{S_t}{B_{t,t+T}}$

3: Finite State Space

4: Complete Market

Buy (or construct) state contingent claims

- ullet Buy an option paying \$1 if $x \geq k_1$
- ullet Sell an option paying \$1 if $x \geq k_2$
- Portfolio pays \$1 if $k_1 < x < k_2$

5: Homogeneous Expectations

Firm j

- ullet Investors agree on cash flows, x_j
- ullet Investors agree on probabilities, p_j

6: Asset Forward Price

Law of One price

$$egin{aligned} F_{j,t,t+T} &= rac{\sum}{i}(x_{j,t+T,i} \,\, q_i) \ F_j &= rac{\sum}{i}(q_i x_{j,i}) \end{aligned}$$

Properties of the state price

1. The state price, q_i , is always greater than zero.

2. The state prices sum to 1, i.e. $\Sigma_i q_i = 1$.

State Price, Pricing Kernel

$$egin{array}{ll} F_1 &= x_{1,g}(q_1+q_2+q_3) \ &+ x_{1,o}(q_4+q_5+q_6) \ &+ x_{1,b}(q_7+q_8+q_9) \end{array}$$

The Pricing Kernel, ϕ_i

$$\phi_i = rac{oldsymbol{q}_i}{oldsymbol{p}_i},$$

The properties of ϕ_i are as follows:

- 1. Since $p_i > 0$ and $q_i > 0$, this means the pricing kernel ϕ_i is a positive function.
- 2. $E(\phi) = 1$.

Normality of x_m : The CAPM

$$F_j = \sum\limits_i (x_{j,i} \ q_i) = \sum\limits_i p_i \ \left(\phi_i \ x_{j,i}
ight) = E \left(\phi \ x_j
ight)$$

$$F_{j}=E\left(x_{j}\phi
ight)=E\left(\phi
ight)E\left(x_{j}
ight)\!+\!cov\left(\phi,x_{j}
ight)$$

$$F_{j}=E\left(x_{j}
ight) +cov\left(\phi ,x_{j}
ight) .$$

$$F_{j}=E\left(x_{j}
ight) +cov\left[\phi(x_{m}),x_{j}
ight] .$$

Covariance and joint probability

Covariance definition

$$cov(x, y) = E\{[x - E(x)][y - E(y)]\}.$$

$$egin{array}{ll} E(x) &= p(x_1)x_1 + p(x_2)x_2 + \ E(x) &= \sum\limits_i p(x_i)x_i \end{array}$$

$$egin{array}{ll} E(y) &= p(y_1)y_1 + p(y_2)y_2 + \ E(y) &= \sum\limits_i p(y_i)y_i \end{array}$$

Let $p(x_i, y_j)$ be the joint probability of x_i and y_j occurring, then

$$egin{aligned} cov(x,y) &= p(x_1,y_1)[x_1-E(x)][y_1-E(y)] \ &+ p(x_1,y_2)[x_1-E(x)][y_2-E(y)] \ &+ ... \ &+ p(x_i,y_j)[x_i-E(x)][y_j-E(y)] \end{aligned}$$

Stein's Lemma

If x, y are joint normally distributed

$$cov(g(x), y] = E[g'(x)]cov(x, y)$$

Hence

$$[cov(x_j,\phi(x_m)] = E[\phi'(x_m)]cov(x_j,x_m)$$

Stein's Lemma

Examples:

1.

$$cov[g(x), y] = E[g'(x)]cov(x, y)$$

let

$$g(x) = a + bx$$
 $g'(x) = b$ $cov[g(x), y] = b \ cov(x, y)$

2. let

$$g(x) = a + bx + cx^2 \ g'(x) = b + 2cx \ cov[g(x),y] = [b + 2cE(x)]cov(x,y)$$

3. let

$$egin{aligned} g(x) &= e^x \ g'(x) &= e^x \ cov[g(x),y] &= E(e^x)cov(x,y) \end{aligned}$$

CAPM: Derivation: Forward-Cash Flow Version

$$egin{aligned} F_j &= E\left(x_j
ight) E(\phi(x_m)) + cov\left(x_j,\phi(x_m)
ight). \ F_j &= E\left(x_j
ight) E(\phi(x_m)) - \kappa cov\left(x_j,x_m
ight). \ &= E\left(x_j
ight) - \kappa cov\left(x_j,x_m
ight), \end{aligned}$$

$$\kappa = -E[\phi'(x_m)]$$
 .

Since

$$F_m = E\left(x_m
ight) - \kappa cov\left(x_m, x_m
ight) \ \kappa = rac{E(x_m) - F_m}{var(x_m)}$$

and

$$F_{j} = E(x_{j}) - rac{E(x_{m}) - F_{m}}{var(x_{m})}cov\left(x_{j}, x_{m}
ight)$$

CAPM: Applications

- 1. Cost of capital
 - For firm
 - For capital project

2. Valuation of non-listed equity

3. Mergers and acquisitions

For applications see Brealey and Myers, Copeland and Weston

APT Arbitrage Pricing Theory

We assume there are k factors and for factor f_k the factor loading is β_{jk} .

$$x_j = a_j + \sum\limits_{k=1}^K eta_{jk} f_k + arepsilon_j$$

where ε_j is independent of f_k .

$$cov\left(x_{j},\phi(x_{m})
ight)=\sum\limits_{k=1}^{K}eta_{jk}cov\left(f_{k},\phi(x_{m})
ight)\!+\!cov(arepsilon_{j},\phi(x_{m}))$$

1.
$$\varepsilon_i = 0$$

2.
$$cov(\varepsilon_j, \phi(x_m)) = 0$$

If
$$\varepsilon_j = 0$$
 or $cov(\varepsilon_j, \phi(x_m)) = 0$, then

$$egin{aligned} cov\left(x_{j},\phi(x_{m})
ight) &= \sum\limits_{k=1}^{K}eta_{jk}cov\left(f_{k},\phi(x_{m})
ight) \ F_{j} &= E\left(x_{j}
ight) + eta_{j1}cov\left(f_{1},\phi(x_{m})
ight) \ &+ eta_{j2}cov\left(f_{2},\phi(x_{m})
ight) + \cdots \end{aligned}$$

The Pricing Kernel: An Equilibrium Model

- Assume a 'representative agent' economy
- Let $w_{t+T,i}$ be the wealth of the investor in state i at time t+T.
- ullet Assume that the investor is endowed with investible wealth w_t at time t
- The investor can purchase state-contingent claims.
- Choose a set of state-contingent claims paying $w_{t+T,i}$, given a budget allocation of cash, w_t .

We make the following additional assumptions:

1. The investor maximises the expected value of a utility function $u(w_{t+T})$. Hence the investors problem is:

$$maxE\left[u\left(w_{t+T}
ight)
ight] = \sum\limits_{i} p_{i} \; u(w_{t+T,i})$$

subject to

$$\sum_{i} \boldsymbol{w_{t+T,i}} \ \boldsymbol{q_i} \ \boldsymbol{B_{t,t+T}} = \boldsymbol{w_t} \qquad (10)$$

2. The utility function has the properties $u'(w_{t+T}) > 0$ (non-satiation) and $u''(w_{t+T}) < 0$ (risk aversion).

A two-state example:

$$\max p_1 u(w_{t+T,1}) + p_2 u(w_{t+T,2})$$

subject to

$$[w_{t+T,1}q_1+w_{t+T,2}q_2]B_{t,t+T}=w_t$$

Lagrangian:

$$egin{array}{ll} L &= p_1 u(w_{t+T,1}) + p_2 u(w_{t+T,2}) \ &+ \lambda \{w_t B_{t,t+T}^{-1} - w_{t+T,1} q_1 - w_{t+T,2} q_2\} \end{array}$$

FOC for a maximum:

$$rac{\partial L}{\partial w_{t+T,1}} = p_1 \; u'\left(w_{t+T,1}
ight) - q_1 \lambda = 0.$$

$$rac{\partial L}{\partial w_{t+T,2}} = p_2 \; u'\left(w_{t+T,2}
ight) - q_2 \lambda = 0.$$

Summing over the states i

$$p_1 \ u'(w_{t+T,1}) + p_2 \ u'(w_{t+T,2}) = \lambda(q_1 + q_2)$$
 or

$$E[u'(w_{t+T})] = \lambda,$$

since $q_1 + q_2 = 1$.

Substituting for λ

$$egin{aligned} rac{p_1 \; u' \left(w_{t+T,1}
ight)}{E \left[u' \left(w_{t+T}
ight)
ight]} &= q_1, \ rac{p_2 \; u' \left(w_{t+T,2}
ight)}{E \left[u' \left(w_{t+T}
ight)
ight]} &= q_2, \end{aligned}$$

and hence the first order conditions are satisfied if

$$rac{u'\left(w_{t+T,i}
ight)}{E\left[u'\left(w_{t+T}
ight)
ight]} = rac{q_i}{p_i} = \phi_i, \ \ orall i.$$

$$\phi_{i}=rac{u'\left(x_{m,i}
ight)}{E\left[u'\left(x_{m,i}
ight)
ight]}:\;orall i.$$

Hence we have

$$\phi = \phi(x_m),$$

Case 1: Risk Neutrality

$$egin{aligned} u\left(w_{t+T}
ight) &= a+b \,\, w_{t+T}, \ u'\left(w_{t+T}
ight) &= b, \ E[u'\left(w_{t+T}
ight)] &= b, \end{aligned}$$

$$\phi_{i}\left(w_{t+T,i}
ight)=rac{u'\left(w_{t+T,i}
ight)}{E\left[u'\left(w_{t+T}
ight)
ight]}=1.$$

Forward Price Under Risk Neutrality: In this case, the forward price is

$$egin{array}{ll} F_{t,t+T} &= E\left(\phi \; x
ight) \ &= E\left(1 \cdot x
ight) \ &= E\left(F_{t+T,t+T}
ight) \end{array}$$

Case 2: Utility is Quadratic

Assume utility is given by:

$$egin{aligned} u\left(w_{t+T}
ight) &= a + bw_{t+T} + \delta w_{t+T}^{2} \ u'\left(w_{t+T}
ight) &= b + 2\delta w_{t+T} \ \phi\left(w_{t+T}
ight) &= rac{u'\left(w_{t+T}
ight)}{E\left[u'\left(w_{t+T}
ight)
ight]} \ &= rac{b + 2\delta w_{t+T}}{b + 2\delta E\left(w_{t+T}
ight)} \ cov\left[\phi\left(w_{t+T}
ight), x_{t+T}
ight] &= rac{2\delta cov\left(w_{t+T}, x_{t+T}
ight)}{b + 2\delta E\left(w_{t+T}
ight)} \end{aligned}$$

Then

$$F_{t,t+T} = E\left(x_{t+T}
ight) + \kappa \, \, cov\left(w_{t+T},x_{t+T}
ight),$$

where

$$\kappa = rac{2\delta}{b + 2\delta E\left(w_{t+T}
ight)}$$

Asset specific pricing kernel For asset j, we can write

$$egin{aligned} F_j &= E\left(\phi x_j
ight) \ &= E\left[E\left(\phi\left|x_j
ight) \; x_j
ight] \ F_j &= E\left(\psi_j x_j
ight) \end{aligned}$$

$$\psi_j > 0$$
. $E(\psi_j) = 1$.

Example:

Figure 1.2

$$\psi_{x_{1,g}}=E(\phi|x_1=x_{1,g})$$

$$\psi_{x_{1,q}} = p_1\phi_1 + p_2\phi_2 + p_3\phi_3$$

Other Readings:

Huang C-F and R.H. Litzenberger (1988) Foundations for Financial Economics, North Holland, Chapters 1 and 4.

- Pliska (1997) Introduction to Mathematical Finance, Blackwell, Chapters 1 and 2.
- Cochrane (2001) Asset Pricing, Princeton, chs 1-6
- Copeland and Weston (1988), Financial Theory and Corporate Policy, Addison-Wesley.

3 Option pricing and risk-neutral valuation

Options and Contingent Claims

A contingent claim on a cash flow x pays some function g(x). The payoff g(x) is contingent on the payoff x on the underlying asset.

A European-style call option maturing at time t + T, on a cash flow x pays

$$g(x) = max[x - k, 0]$$

A European-style put option maturing at time t + T, on a cash flow x pays

$$g(x) = max[k - x, 0]$$

The Normal Distribution

If f(x) is normal with mean μ_x , and standard deviation σ_x :

$$f(x)=rac{1}{\sigma_x\sqrt{2\pi}}e^{-rac{1}{2\sigma_x^2}[x-\mu_x]^2}$$

The standard normal distribution, has mean 0 and standard deviation 1 is

$$n(y)=rac{1}{\sqrt{2\pi}}e^{rac{-y^2}{2}}$$

The cumulative normal distribution function is

$$F(x)=\int_{-\infty}^x f(u)du$$

The cumulative standard normal distribution function is

$$N(y)=\int_{-\infty}^y f(u)du$$

• If f(x) normal,

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

 $E(x>a)=\int_a^\infty x f(x) dx$

ullet The normal distribution is the limit $n \to \infty$ of a binomial distribution with n steps

The Joint Normal Distribution

$$egin{aligned} f(x,y) &= rac{1}{2\pi\sigma_x\sigma_y\sqrt{1-
ho^2}} \ & \cdot e^{-rac{1}{2(1-
ho^2)}\left[\left(rac{x-\mu_x}{\sigma_x}
ight)^2+\left(rac{y-\mu_y}{\sigma_y}
ight)^2-2
horac{x-\mu_x}{\sigma_x}rac{y-\mu_y}{\sigma_y}
ight]} \end{aligned}$$

- If f(x, y) joint normal, f(x) and f(y) are normal
- If f(x,y) joint normal, the conditional distribution f(x|y) is normal
- \bullet The regression of x on y is

$$E(x|y) = \mu_x + rac{
ho\sigma_x}{\sigma_y}(y-\mu_y)$$

A Simple Option Pricing Model

Assume quadratic utility for the representative investor and joint-normal distribution

From ch 1

$$egin{aligned} u\left(x_m
ight) &= a + bx_m + \delta x_m^2 \ \phi\left(x_m
ight) &= rac{u'\left(x_m
ight)}{E\left[u'\left(x_m
ight)
ight]} \ &= rac{b + 2\delta x_m}{b + 2\delta E\left(x_m
ight)} \end{aligned}$$

Hence in this case

$$\phi = A + Bx_m$$
.

$$F\left[g\left(x
ight)
ight] = E\left[g\left(x
ight)
ight] + cov\left(g\left(x
ight), A + Bx_{m}
ight)$$

Using Stein's lemma

$$F\left[g\left(x
ight)
ight] = E\left[g\left(x
ight)
ight] + BE\left[g'\left(x
ight)
ight] cov\left(x,x_{m}
ight)$$

The contingent claim is a call option where $g(x) = \max(x - k, 0)$.

$$E[g'(x)] = \operatorname{prob}(x > k)$$
 and hence

$$egin{aligned} F_m &= E\left[x_m
ight] + B \; var\left(x_m
ight) \ B &= rac{F_m - E(x_m)}{var(x_m)} \end{aligned}$$

An application: Valuation of Corporate debt

Assumptions:

- 1. Company assets produces cash flow x_j at time t+T
- 2. x_j and x_m are joint normal
- 3. Bonds outstanding B_{t+T} to be repaid at time t+T
- 4. Equity is call option receives:

$$g(x) = max[x_j - B_{t+T}, 0]$$
 at $t+T$

5. Forward value of equity is

$$F[g(x)] = E[g(x)] + B\left[\operatorname{prob}(x>k)
ight] cov(x_j,x_m)$$

6. Spot value of equity is

$$S_t = F[g(x)]B_{t,t+T}$$

- 7. Value of company assets is V_t
- 8. Value of the debt is

$$V_t - S_t$$

The Black-Scholes Model

• Purpose

- To price options on stocks
- To value corporate liabilities
- To evaluate credit risk

• Assumptions

- Lognormal asset price
- No dividends
- Option is European-style

• Main Features

- Preference-free relationship
- Mean of asset not required
- Inputs: asset price, volatility

• Generalisations

- Forex options
- American-style options

Pricing of Contingent Claims

$$egin{aligned} F_{t,t+T}\left[g\left(x_{j,t+T}
ight)
ight] &= \sum\limits_{i} q_{i}g\left(x_{j,t+T,i}
ight) \ &= \sum\limits_{i} p_{i}\phi_{i}g\left(x_{j,t+T,i}
ight) \ &= E\left[g\left(x_{j,t+T}
ight)\phi
ight] \ &= E\left[g(x_{j})E(\phi|x_{j})
ight] \ &= E\left[g(x_{j})\psi(x_{j})
ight] \end{aligned}$$

Characteristics of the Pricing Kernel, ψ_j

Assume that

$$\psi_j = lpha x_j^eta$$

where α and β are constants.

The asset specific pricing kernel has constant elasticity.

The elasticity of the pricing kernel defined by the relationship:

$$\eta = -rac{\partial \psi_j/\psi_j}{\partial x_j/x_j}$$

Special Case of Options on x_m

Conditions for constant elasticity

- In this case $\psi_j = \phi(x_m)$
- ullet $\phi(x_m)$ has constant elasticity if the representative investor has power utility
- If $u(x_m) = x_m^{\gamma}$ then ϕ has constant elasticity

The Lognormal Distribution

If ln(x) is normal with

$$E[\ln(x)] = \mu_x, var[\ln(x)] = \sigma_x^2$$

then x is lognormally distributed

If $f(\ln x)$ is normal with mean μ_x , and standard deviation σ_x :

$$f(\ln x) = rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x - \mu_x]^2}$$

- The lognormal distribution is the limit of a process where $\ln x$ is binomial
- Assume a stock price S_t goes up by a proportion u with probability p or down by d with probability (1-p) then S_t is log-binomial

Further Properties of Lognormal Variables

1. The expected value of a lognormal variable: Let Y be lognormal, with $y = \ln(Y)$

$$E(Y)=E(e^y)=e^{\mu_y+rac{1}{2}\sigma_y^2}.$$

2. Also,

$$E(Y^b) = E(e^{by}) = e^{b\mu_y + rac{1}{2}b^2\sigma_y^2}.$$

3. If x, y are lognormal, xy is lognormal.

$$\ln xy = \ln x + \ln y$$

It follows

$$E(\ln xy) = E(\ln x) + E(\ln y)$$

or

$$E(\ln xy) = \mu_x + \mu_y$$

$$egin{array}{ll} var(\ln xy) &= var(\ln x) + var(\ln y) \ &+ 2cov(\ln x, \ln y) \end{array}$$

or

$$var(\ln xy) = \sigma_x^2 + \sigma_y^2 + 2\sigma_{x,y}$$

4. It follows:

$$egin{array}{ll} E(xy) \, = \, e^{E(\ln xy) + rac{1}{2} var(\ln xy)} \ &= \, e^{\mu_x + \mu_y + rac{1}{2} \sigma_x^2 + rac{1}{2} \sigma_y^2 + \sigma_{x,y}} \end{array}$$

A General Binomial Process

A Log-Binomial Process

Lognormal x_j and the Black-Scholes Model

Properties of

Lognormality

Pricing

Kernel

Risk-adjusted

PDF

Forward

RNVR

Price of x_j

Black-Scholes Model

Module 1: Notation and Lognormal Properties

$$egin{align} E\left[\ln x
ight] &= \mu_x \ var\left[\ln x
ight] &= \sigma_x^2 \ f(\ln x) &= rac{1}{\sigma_x\sqrt{2\pi}}e^{-rac{1}{2\sigma_x^2}[\ln x - \mu_x]^2} \ \end{gathered}$$

$$E(x_j) = e^{\mu_x + rac{1}{2}\sigma_x^2}$$

$$E(x_j^eta) = e^{eta \mu_x + rac{1}{2}eta^2 \sigma_x^2}$$

Option payoff:

$$g(x_j) = g\left(e^{\ln x_j}
ight) = h(\ln x_j)$$

Module 2: Asset Specific Pricing Kernel

$$egin{aligned} F\left[g\left(x_{j}
ight)
ight] &= E\left[g\left(x_{j}
ight)\phi(x_{m})
ight] \ &= E\left[g\left(x_{j}
ight)E\left[\phi(x_{m})|x_{j}
ight]
ight] \ &= E\left[g\left(x_{j}
ight)\psi(x_{j})
ight] \end{aligned}$$

Assume that

$$\psi_j = lpha x_j^eta$$

where α and β are constants.

Elasticity:

$$\eta = -rac{\partial \psi_j/\psi_j}{\partial x_j/x_j}$$

$$\eta = -lphaeta x_j^{eta-1}rac{x_j}{lpha x_j^eta} = -eta_j^{-1}$$

 $E(\psi_j)=1$ implies that

$$lpha = e^{-eta \mu_x - rac{1}{2}eta^2 \sigma_x^2}.$$

Module 3: Risk-Adjusted PDF

PDF of x_j :

$$f(\ln x_j) = rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - \mu_x]^2}$$

Risk-adjusted PDF of x_j :

$$\hat{f}(\ln x_j) = f(\ln x)\psi(x_j) = lpha x_j^eta rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - \mu_x]}$$

$$\hat{f}(\ln x_j) = e^{-eta \mu_x - rac{1}{2}eta^2 \sigma_x^2} x_j^eta rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - \mu_x]^2}$$

$$\hat{f}(\ln x_j) = rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - (\mu_x + eta \sigma_x^2)]^2}$$

Module 4: Forward Asset Price of x_j

From ch 1:

$$F_j = E[x_j \psi(x_j)]$$

$$F_i=e^{\mu_x+\mu_\psi+rac{1}{2}\sigma_x^2+rac{1}{2}\sigma_\psi^2+\sigma_{x\psi}}$$

since $E(\psi) = 1$

$$F_j = e^{\mu_x + rac{1}{2}\sigma_x^2 + \sigma_{x\psi}}$$

$$\ln F_j - rac{1}{2}\sigma_x^2 = \mu_x + \sigma_{x\psi}$$

Module 5: The Lognormal RNVR

Under Risk Neutrality:

$$E\left[g\left(x_{j}
ight)
ight]=E\left[h\left(\ln x_{j}
ight)
ight]$$

$$=\int h(\ln x_j)f(\ln x_j)d\ln x_j$$

$$F_j=E(x_j)=e^{\mu_x+rac{1}{2}\sigma_x^2}$$

$$E[g(x_j)] = \int h(\ln x_j) rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - (\ln F - rac{1}{2}\sigma_x^2)]^2} d\ln x_j$$

Under Risk Aversion

$$F[g(x_j)] = \int h(\ln x_j) rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - (\ln F - rac{1}{2}\sigma_x^2)]^2} d\ln x_j$$

Module 6: Option Prices: The Black-Scholes Model

$$F[g(x_j)] = E[g(x_j) \psi(x_j)]$$

$$F[g(x_j)] = \int h(\ln x_j) rac{1}{\sigma_x \sqrt{2\pi}} e^{-rac{1}{2\sigma_x^2}[\ln x_j - (\ln F - rac{1}{2}\sigma_x^2)]^2} d\ln x_j$$

The Black-Scholes Model: A Call Option

A European-style call option on x_j , with strike price k has a payoff at time t+T:

$$g(x_j) = max(x_j - k, 0).$$

or

$$h(\ln x_j) = max(e^{\ln x_j} - e^{\ln k}, 0).$$

$$F\left[g\left(x
ight)
ight] = \int_{-\infty}^{\infty} max \left(e^{\ln x_{j}} - k, 0
ight) \hat{f}\left(\ln x_{j}
ight) d\ln x_{j}$$

where

$$\hat{f}\left(\ln x_j
ight) = rac{1}{\sigma_x\sqrt{2\pi}}e^{-rac{1}{2\sigma_x^2}\left[\ln x_j - (\ln F_j - rac{1}{2}\sigma_x^2)
ight]^2}$$

$$F\left[g\left(x
ight)
ight] = \int_{\ln k}^{\infty} \left(e^{\ln x_{j}} - k
ight) \hat{f}\left(\ln x_{j}
ight) d\ln x_{j}$$

$$egin{aligned} F\left[g\left(x
ight)
ight] &= \int_{\ln k}^{\infty} e^{\ln x_j} \hat{f}\left(\ln x_j
ight) d\ln x_j \ &- k \int_{\ln k}^{\infty} \hat{f}\left(\ln x_j
ight) d\ln x_j. \end{aligned}$$

The Normal Distribution

Probability y > a

and

$$\int_a^\infty f(y)dy$$
.

$$\int_a^\infty f(y) dy = 1 - N\left(rac{a - \mu_y}{\sigma_y}
ight) = N\left(rac{\mu_y - a}{\sigma_y}
ight).$$

The Normal Distribution

Expected value of e^y given y > a

$$\int_a^\infty e^y f(y) dy$$

$$\int_a^\infty e^y f(y) dy = N \left(rac{\mu_y - a}{\sigma_y} + \sigma_y
ight) e^{\mu_y + rac{1}{2}\sigma_y^2}.$$

Evaluate the integrals

$$y = \ln x_j$$
 and $a = \ln k$.

The Normal Distribution

Applying the above results and substituting the mean of $\hat{f}(\ln x_j)$, $\mu_x = \ln (F_j) - \frac{\sigma_x^2}{2}$ and $a = \ln k$, we have

$$Nigg(rac{\mu_y-a}{\sigma_y}igg)=Nigg(rac{\ln F_j-rac{\sigma_x^2}{2}-\ln k}{\sigma_x}igg)$$

and

$$N\left(rac{\mu_y-a}{\sigma_y}+\sigma_y
ight)e^{\mu_y+rac{1}{2}\sigma_y^2} \ = F_jN\left(rac{\ln F_j-rac{\sigma_x^2}{2}-\ln k+\sigma_x^2}{\sigma_x}
ight)$$

The Black-Scholes Model: Forward Price

$$F\left[g\left(x
ight)
ight] = F_{j}N\left(rac{\lnrac{F}{k}-rac{\sigma_{x}^{2}}{2}+\sigma_{x}^{2}}{\sigma_{x}}
ight) -kN\left(rac{\lnrac{F}{k}-rac{\sigma_{x}^{2}}{2}}{\sigma_{x}}
ight).$$

Asset forward price F_j

The (logarithmic) variance σ_x^2 ,

The strike price of the option, k.

The Black-Scholes Model: Spot Price

$$egin{aligned} S_t[g(x_j)] &= B_{t,t+T} F_j N \left(rac{\ln rac{F}{k} - rac{\sigma_x^2}{2} + \sigma_x^2}{\sigma_x}
ight) \ &- B_{t,t+T} k N \left(rac{\ln rac{F}{k} - rac{\sigma_x^2}{2}}{\sigma_x}
ight). \end{aligned}$$

or, using conventional notation:

$$S_{t}[g(x_{j})] = B_{t,t+T}F_{j}N\left(d_{1}
ight) - B_{t,t+T}kN\left(d_{2}
ight),$$
 where

$$egin{aligned} d_1 &= rac{\lnrac{F_j}{k} + rac{\sigma_x^2}{2}}{\sigma_x} \ d_2 &= d_1 - \sigma_x. \end{aligned}$$

The Black-Scholes Model: Applications

- 1. Non-dividend paying assets:
- 2. Assets paying a non-stochastic dividend:
- 3. Assets paying a stochastic proportional dividend

The Black-Scholes Model: Non-dividend paying assets

In this case, spot-forward parity for the underling asset means that the spot price of the asset is

$$S_t = F_j B_{t,t+T},$$

where $B_{t,t+T} = e^{-rT}$ and r is the continuously compounded interest rate.

$$S_{t}[g(x_{j})] = S_{t}N(d_{1}) - ke^{-rT}N(d_{2}),$$
 (12)
 $d_{1} = \frac{\ln \frac{S_{t}}{k} + rT + \frac{\sigma_{x}^{2}}{2}}{\sigma_{x}}$
 $d_{2} = d_{1} - \sigma_{x}$

The Black-Scholes Model: Assets paying a non-stochastic dividend

known dividend D_{t+T} at time t+T. In this case, spot-forward parity implies

$$S_t = (F_j + D_{t+T})B_{t,t+T},$$

$$S_{t}[g(x_{j})] = (S_{t} - D_{t+T}e^{-rT})N\left(d_{1}
ight) - ke^{-rT}N\left(d_{2}
ight),$$
 where

$$egin{aligned} d_1 &= rac{\lnrac{S_t-D_{t+T}e^{-rT}}{k}+rac{\sigma_x^2}{2}+rT}{\sigma_x}\ d_2 &= d_1-\sigma_x. \end{aligned}$$

The Black-Scholes Model: Assets paying a stochastic proportional dividend

$$D_{t+T} = \delta x_j$$
 $S_t = F_i (1+\delta) B_{t,t+T}.$

$$S_{t}[g(x_{j})]=rac{S_{t}}{\left(1+\delta
ight)}N\left(d_{1}
ight){-}ke^{-rT}N\left(d_{2}
ight).$$

where

$$egin{aligned} d_1 &= rac{\ln rac{S_t}{(1+\delta)} + rT - \ln k + rac{\sigma_x^2}{2}}{\sigma_x} \ d_2 &= d_1 - \sigma_x. \end{aligned}$$

Spot-Forward Parity

1. Non-dividend paying assets:

$$S_t = F_j B_{t,t+T},$$

$$F_j = rac{S_t}{B_{t,t+T}}$$

2. Assets paying a non-stochastic dividend:

$$S_t = (F_j + D_{t,t+T})B_{t,t+T},
onumber \ F_j = rac{S_t}{B_{t,t+T}} - D_{t+T}$$

3. Assets paying a stochastic proportional dividend

$$S_t = F_j (1+\delta) B_{t,t+T}.
onumber$$
 $F_j = rac{S_t}{B_{t,t+T}} igg(rac{1}{1+\delta}igg)$

The Black-Scholes Model: Extensions

- 1. Multivariate Options:
- 2. Compound Options:
- 3. Bermudan-style options
- 4. American-style options
- 5. Non-Constant Elasticity
- 6. Non-Lognormal Asset Distributions

4 Multi-period asset pricing

Asset prices in a Multi-period Economy

- 1. Chapter 5: Extension of ch 1 model to multiple periods
- 2. Chapter 6: Application to analysis of Forward contracts and Futures contracts

Motivation

1. Valuation of a company: more realistic model

- 2. Capital budgeting: Should an Investment project be accepted
- 3. Does the CAPM extend and apply in a multi-period world?
- 4. Basic problem
 - Multiple dates
 - Multiple states at each date

Asset prices in a Multi-period Economy: Introduction

- Valuation under certainty
- Time-state preference approach
- Rational expectations approach

Asset prices in a Multi-period Economy: Certainty Case

$$egin{aligned} S_{j,t} &= B_{t,t+1}(X_{j,t+1} + S_{j,t+1}) \ S_{j,t+1} &= B_{t+1,t+2}(X_{j,t+2} + S_{j,t+2}) \ S_{j,t+2} &= B_{t+2,t+3}(X_{j,t+3} + S_{j,t+3}) \ ... &= ... \ S_{j,t+n-1} &= B_{t+n-1,t+n}X_{j,t+n} \end{aligned}$$

$$S_{j,t} = B_{t,t+1} X_{j,t+1} + B_{t,t+1} B_{t+1,t+2} X_{j,t+2} ... \ + B_{t,t+1} B_{t+1,t+2} ... B_{t+n-1,t+n} X_{j,t+n}$$

Asset prices in a Multi-period Economy: Basic Set-up

- 1. Markets are complete. Investors can purchase claims that pay \$1 if and only if a given state occurs at a given point in time.
- 2. Assume there are just two periods; period t-t+1 and period t+1-t+2.
- 3. Value a stock j which pays dividends $x_{j,t+1}$ at time t+1 and $x_{j,t+2}$ at time t+2.
- 4. There are $i=1, 2, \dots, I$ states at time t+1 and there are $k=1, 2, \dots, K$ states at time t+2.

Asset prices in a Multi-period Economy: Basic Set-up

Time-State Preference Approach

1. Treat each period cash flow as separate valuation

- 2. Define $\phi_{t,t+1} = q_i/p_i$
- 3. Define $\phi_{t,t+2} = q_k/p_k$ and so on.

Then applying ch 1 for each T:

$$S_t = \sum\limits_{T=1}^n F_{t,t+T} B_{t,t+T},$$

where

$$F_{t,t+T} = E\left[\phi_{t,t+T}x_{t+T}
ight]$$
 .

Rational Expectations Approach: Basic Set-up

Consider the following state diagram:-

 p_i is the probability of state i occurring at time t+1

 $p_{i,k}$ is the conditional probability of state k occurring at t+2

 q_i is the forward price of a dollar paid if and only if state i occurs.

 $q_{i,k}$ is the (conditional) forward price, in state i of a dollar paid if and only if state k occurs.

Equivalence of TSP and RE Prices: Example

Let i = 1, 2, k = 1, 2, 3, 4

Assume a state space as follows:

Equivalence of TSP and RE Prices: Example

1. Zero-coupon bond prices

$$egin{array}{ll} B_{t,t+1} &= 0.9 \ B_{t+1,t+2,1} &= 0.9 \ B_{t+1,t+2,2} &= 0.8 \end{array}$$

2. Forward state prices

$$q_i,\ i=1:\ q_1=4/9 \ q_i,\ i=2:\ q_2=5/9 \ q_{i,k},\ i=1,k=1:\ q_{1,1}=4/9 \ q_{i,k},\ i=1,k=2:\ q_{1,2}=5/9 \ q_{i,k},\ i=2,k=3:\ q_{2,3}=1/2 \ q_{i,k},\ i=2,k=4:\ q_{2,4}=1/2$$

Equivalence of TSP and RE Prices: Example

$oldsymbol{t}$	t+1	t+2
?		1
$\overline{(4/9)(0.9).(4/9)(0.9)}$	0.4	
	-0.4	1

Note: 0.4 is spot price at date 1, in state 1

Strategy ensures \$1 in state 1 at date 2

Rational Expectations Approach

Using ch 1 method:

$$egin{array}{ll} S_t \ = \ B_{t,t+1} \sum\limits_i p_i \phi_{t,t+1,i} \ S_{t+1,i} \ = \ B_{t,t+1} \ E_t \left(\phi_{t,t+1} S_{t+1}
ight) \end{array}$$

This is the value of x_{t+2} at time t.

Substituting for S_{t+1} :

$$S_t \, = \, B_{t,t+1} E_t \, [\phi_{t,t+1} B_{t+1,t+2} \, \, E_{t+1} \, (\phi_{t+1,t+2} \, \, x_{t+2})]$$

The Fundamental Equation of Valuation

The value of any cash flow $x_{j,t+T}$:

$$egin{array}{lll} S_{j,t} &=& B_{t,t+1} E_t [\phi_{t,t+1} B_{t+1,t+2} E_{t+1} (\phi_{t+1,t+2} \ & B_{t+T-1,t+T} E_{t+T-1} (\phi_{t+T-1,t+T} x_{j,t+T}))] \end{array}$$

where $\phi_{\tau,\tau+1}$ is the period-by-period pricing kernel.

The Relationship Between the Pricing Kernels when Interest Rates are Non-stochastic

The cost of a claim on state k is $B_{t,t+2}q_k$.

Alternatively, cost is

$$B_{t,t+1}q_iB_{t+1,t+2}q_{i,k}.$$

Hence

$$B_{t,t+2}q_k = B_{t,t+1}q_iB_{t+1,t+2}q_{i,k}.$$

$$B_{t,t+2}rac{q_k}{p_k} = B_{t,t+1}rac{q_i}{p_i}B_{t+1,t+2}rac{q_{i,k}}{p_{i,k}},$$

and hence

$$B_{t,t+2}\phi_{t,t+2}=B_{t,t+1}\phi_{t,t+1}B_{t+1,t+2}\phi_{t+1,t+2}.$$

But since in this case, $B_{t,t+2} = B_{t,t+1}B_{t+1,t+2}$, we have

$$\phi_{t,t+2} = \phi_{t,t+1} \ \phi_{t+1,t+2}$$
.

or, in general

$$\phi_{t,t+T} = \phi_{t,t+1} \ \phi_{t+1,t+2} \dots \phi_{t+T-1,t+T}$$

Rational Expectations Approach: Basic Set-up

We now define the period-by-period pricing kernel by the relationship:

$$\phi_{t+1,t+2,i,k}=rac{q_{i,k}}{p_{i,k}}.$$

Using this we can write:

$$egin{array}{lll} S_{t+1,i} &= B_{t+1,t+2,i} \sum\limits_k p_{i,k} \phi_{t+1,t+2,i,k} \; x_{t+2,k} \ &= B_{t+1,t+2,i} \; E_{t+1,i} \left(\phi_{t+1,t+2,i} \; x_{t+2}
ight) \end{array}$$

This is the value of x_{t+2} at time t+1 in state i.

The Structure of State-Contingent Claim Prices

	$\operatorname{Time} t$	Time $t+1$	Time
$egin{array}{l} ext{Spot price at} \ t ext{ of 1 paid at $t+2$} \end{array}$	q_k^*		
${ m Spot\ price\ at}\ t\ { m of\ \$1\ paid\ at}\ t+1$	q_i^*		
Spot price at $t+1$ of \$1 paid at $t+2$		$q_{i,k}^*$	
$\begin{array}{c} { m Period-by-period} \\ { m valuation} \end{array}$	$oxed{q_i^*q_{i,k}^*}$	$\boldsymbol{q_{i,k}^*}$	\$1
One - long - period valuation	q_k^*		\$1

$$egin{array}{ll} q_i^* &= q_i B_{t,t+1} \ q_k^* &= q_k B_{t,t+2} \ q_{i,k}^* &= q_{i,k} B_{t+1,t+2,i} \end{array}$$

Equivalence of TSP and RE Prices

$oldsymbol{t}$	t+1	t+2
$-q_kB_{t,t+2}$		1
$\overline{-q_iB_{t,t+1}q_{i,k}B_{t+1,t+2,i}}$	$\left +q_{i,k}B_{t+1,t+2,i} ight $	
	$\left -q_{i,k}B_{t+1,t+2,i} ight $	1

$oldsymbol{t}$	t+1	t+2
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		1
$\overline{-q_i^*q_{i,k}^*}$	$+q_{i,k}^* \ -q^*$	
	$-q_{i,k}^st$	1

Rational Expectations Equilibrium: Joint-Normal Cash Flows

$$S_{j,t} = B_{t,t+1} E_t [\phi_{t,t+1} B_{t+1,t+2} E_{t+1} (\phi_{t+1,t+2} x_{j,t+2})]$$

Alternatively, this pricing equation can be written as

$$S_{j,t} = B_{t,t+1} E_t [\phi_{t,t+1} S_{j,t+1}],$$

where

$$S_{j,t+1,i} = B_{t+1,t+2,i} E_{t+1,i} (\phi_{t+1,t+2,i} x_{j,t+2})]$$
 .

From ch 1, the CAPM holds over t+1 to t+2:

$$egin{array}{ll} S_{j,t+1,i} &= B_{t+1,t+2,i}[E_{t+1,i}(x_{j,t+2}) \ &- \lambda_{t+1,i} cov_{t+1,i}(x_{j,t+2},x_{m,t+2})]. \end{array}$$

where $\lambda_{t+1,i}$ is the market price of risk in state i at t+1

Multi-period Valuation: Joint-Normal Cash Flows

$$egin{array}{lll} S_{j,t+1,i} &= B_{t+1,t+2,i}[E_{t+1,i}(x_{j,t+2}) \ &- \lambda_{t+1,i} cov_{t+1,i}(x_{j,t+2},x_{m,t+2})]. \end{array}$$

Now assume:

- 1. $B_{t+1,t+2,i}$ is non-stochastic
- 2. $\lambda_{t+1,i}$ is non-stochastic

These assumptions were made by Stapleton and Subrahmanyam *Economet-rica* (1978)

Then it follows that:

The value, $S_{j,t+1,i}$, is normally distributed.

Also $S_{m,t+1,i}$, is normally distributed and the conditions for the period-by-period CAPM hold.

Multi-period Valuation: Joint-Normal Cash Flows

$$S_{j,t} = B_{t,t+1} \left[E_t \left(S_{j,t+1}
ight) - \lambda_t cov \left(S_{j,t+1}, S_{m,t+1}
ight)
ight].$$

Substituting for the time t+1 prices, we can write:

$$egin{aligned} S_{j,t} &= B_{t,t+1} B_{t+1,t+2} E_t(x_{j,t+2}) \ &- B_{t,t+2} \lambda_t cov_t \left[E_{t+1}(x_{j,t+2}), E_{t+1}(x_{m,t+2}]
ight. \ &- B_{t,t+2} \lambda_{t+1} cov_{t+1} \left[x_{j,t+2}, x_{m,t+2}
ight] \end{aligned}$$

Multi-Period Valuation: Extensions

- 1. If $B_{t+1,t+2,i}$ is stochastic: Intertemporal CAPM (Merton, Long)
- 2. Equilibrium model to determine $\phi_{t,t+1}$, ch 5.8
- 3. Consumption CAPM, see Cochrane
- 4. RE approach, see Pliska
- 5. Applications: Futures v Forward prices

5 Forward and futures prices

Forward Contracts and Futures Contracts: Motivation

- Futures contracts are the way most contracts are traded on public exchanges
- In the case of interest-rate related securities the difference between forward and futures prices is important
- Determine futures prices of options (as traded on LIFFE)
- Futures prices are expected values (under risk-neutral measure)

Forward Contracts and Futures Contracts

- A forward contract is an agreement made at a point in time t to purchase or sell an asset at a later date t+T.
- A futures contract is similar to a forward contract but is marked to market on a daily basis as time progresses from t to t+T.

Futures Contracts: Payoffs

A long futures contract made at time t, with maturity T, to buy an asset at a price $H_{t,t+T}$ has a payoff $[H_{t+\tau,t+T} - H_{t+\tau-1,t+T}]$ at time $t + \tau$.

Hence the payoff at time t+1 is $H_{t+1,t+T}-H_{t,t+T}$

A short futures contract made at time t, with maturity T, to sell an asset at a price $H_{t,t+T}$ has a payoff $[-H_{t+\tau,t+T} + H_{t+\tau-1,t+T}]$ at time $t + \tau$.

Hence the payoff at time t+1 is $-H_{t+1,t+T}+H_{t,t+T}$

Forward Contracts: Payoffs

The payoff on a long forward contract is $[S_{t+T} - F_{t,t+T}]$ at time t + T,

The payoff on a short forward contract is $[-S_{t+T} + F_{t,t+T}]$ at time t+T

Forward and Futures: Payoffs

t t+1 t+2 t+3 \cdots t+TFutures $H_{t+1,t+T}$ $H_{t+2,t+T}$ $H_{t+3,t+T}$ \cdots $H_{t+T,t+T}$ contract $-H_{t,t+T}$ $-H_{t+1,t+T}$ $-H_{t+2,t+T}$ \cdots $-H_{t+T-1,t+T}$ Forward contract S_{t+T} $-F_{t,t+T}$

Long Futures and Long Forward

- Futures is marked-to-market daily
- Forward pays off at end of contract

Characterization of Futures Price

[CIR (1981) Proposition 1]

Consider an asset with a price \widetilde{S}_{t+T} at time t+T. The futures price of the asset, $H_{t,t+T}$, is the time t spot price of an asset which has a payoff

$$rac{\widetilde{S}_{t+T}}{B_{t,t+1}\widetilde{B}_{t+1,t+2}\cdots\widetilde{B}_{t+T-1,t+T}}$$

at time t + T.

Cox J.C., J. E. Ingersoll Jr and S. A. Ross (1981) The relationship between forward prices and futures prices, *Journal of Financial Economics*, 9, pp.321-346.

A Three-year Example

Strategy

• Time 0: invest $H_{0,3}$ overnight

• Time 0: $\frac{1}{B_{0,1}}$ long futures

• Time 1: re-invest proceeds overnight

• Time 1: $\frac{1}{B_{0,1}B_{1,2}}$ long futures

• Time 2: re-invest proceeds overnight

• Time 2: $\frac{1}{B_{0,1}B_{1,2}B_{2,3}}$ long futures

Characterization of Futures Price

Time	Profits from	Gain from	${f Net}$
	${f futures}$	investment	position
0	_	_	$H_{0,3}$
1	$rac{1}{B_{0,1}}[H_{1,3}-H_{0,3}]$	$rac{1}{B_{0,1}}[oldsymbol{H}_{0,3}]$	$rac{1}{B_{0.1}}\left[oldsymbol{H}_{1,3} ight]$
2	$rac{1}{B_{0,1}B_{1,2}}[H_{2,3}-H_{1,3}]$	$rac{1}{B_{0,1}B_{1,2}}[H_{1,3}]$	$rac{1}{B_{0,1}B_{1,2}}[m{H_{2,3}}]$
3	$rac{1}{B_{0,1}B_{1,2}B_{2,3}}[H_{3,3}-H_{2,3}]$	$rac{1}{B_{0,1}B_{1,2}B_{2,3}}[m{H}_{2,3}]$	$rac{1}{B_{0,1}B_{1,2}B_{2,3}}\left[m{H}_{3,3} ight]$

Characterization of Futures Price

ullet The futures price for immediate delivery at T=3 is $H_{3,3}=S_3$

- The strategy turns an investment of $H_{0,3}$ into a cash flow of $\frac{S_3}{B_{0,1}B_{1,2}B_{2,3}}$.
- In general, an investment of $H_{t,t+T}$ can be turned into

$$\frac{S_{t+T}}{B_{t,t+1}B_{t+1,t+2}B_{t+2,t+3}...B_{t+T-1,t+T}}.$$

• Hence $H_{t,t+T}$ must be the value of this payoff.

Characterization of Forward Price

[CIR proposition 2]

Consider an asset with a price \widetilde{S}_{t+T} at time t+T. The forward price of the asset, $F_{t,t+T}$, is the time t spot price of an asset which has a payoff

$$rac{\widetilde{S}_{t+T}}{B_{t,t+T}}$$

at time t + T.

Characterization of Forward Price

• Invest $F_{t,t+T}$ in a T-maturity risk-free bond at time t at the long bond price, $B_{t,t+T}$.

- Take out $1/B_{t,t+T}$ long forward contracts to buy the asset.
- Time t + T, the payoff of the risk-free bond investment is $F_{t,t+T}/B_{t,t+T}$,
- Forward contract payoff is $\left(S_{t+T} F_{t,t+T}\right)/B_{t,t+T}$.
- At time t + T, the combined position is $S_{t+T}/B_{t,t+T}$.
- So $F_{t,t+T}$ is the time t value of $\widetilde{S}_{t+T}/B_{t,t+T}$.

Pricing under Rational Expectations

 S_t is the value of x_{t+3} :

$$S_t = B_{t,t+1} E_t \{ \phi_{t,t+1} B_{t+1,t+2} E_{t+1} [\phi_{t+1,t+2} \ B_{t+2,t+3} E_{t+2} (\phi_{t+2,t+3} x_{t+3})] \},$$

where $\phi_{\tau,\tau+1}$, are the period-to-period pricing kernels.

$$S_t = E_t \{ \phi_{t,t+1} E_{t+1} [\phi_{t+1,t+2} E_{t+2} (\phi_{t+2,t+3} \ B_{t,t+1} B_{t+1,t+2} B_{t+2,t+3} x_{t+3})] \},$$

The futures price $H_{t,t+3}$ is the time-t value of $\frac{x_{t+3}}{B_{t,t+1}B_{t+1,t+2}B_{t+2,t+3}}$

$$egin{aligned} S_t &= E_t \{ \phi_{t,t+1} E_{t+1} [\phi_{t+1,t+2} E_{t+2} (\phi_{t+2,t+3} \ x_{t+3} \ B_{t,t+1} B_{t+1,t+2} B_{t+2,t+3} \overline{B_{t,t+1} B_{t+1,t+2} B_{t+2,t+3}})] \} \end{aligned}$$

$$H_{t,t+3} = E_t \{ \phi_{t,t+1} E_{t+1} [\phi_{t+1,t+2} E_{t+2} (\phi_{t+2,t+3} x_{t+3})] \}$$

A Great Result

$$egin{aligned} H_{t,t+3} &= E_t \{\phi_{t,t+1} E_{t+1} [\phi_{t+1,t+2} E_{t+2} (\phi_{t+2,t+3} x_{t+3})] \} \end{aligned}$$
 or,

$$egin{array}{ll} H_{t,t+3} &= E_t^Q \{ E_{t+1}^Q [E_{t+2}^Q (x_{t+3})] \} \ &= E_t^Q (x_{t+3}) \end{array}$$

Futures Price: Interpretation

• Under risk neutrality, futures = expected payoff

- \bullet Futures price has 'martingale property' under \boldsymbol{Q} (risk-neutral) measure
- Compounding effect offsets stochastic discounting
- Under risk neutrality, forward ≠ expected payoff

The Forward Price

the forward price of x_{t+3} is the spot price of an asset paying $x_{t+3}/B_{t,t+3}$ at time t+3.

$$F_{t,t+3} = E_t^Q \left(rac{B_{t,t+1} B_{t+1,t+2} B_{t+2,t+3} x_{t+3}}{B_{t,t+3}}
ight).$$

$$F_{t,t+T} = E_t^Q \left[egin{array}{c} T \ \Pi \ T \end{array} rac{B_{t+ au-1,t+ au}}{B_{t,t+T}} x_{t+T}
ight].$$

$$b_{t,t+T} = \prod_{ au=1}^{T-1} rac{B_{t+ au-1,t+ au}}{B_{t,t+T}}.$$

$$E_t^Q(b_{t,t+T})=1$$

The Forward Price

$$F_{t,t+T}=E_t^Q(b_{t,t+T}x_{t+T}).$$

$$F_{t,t+T} = E_t^Q(b_{t,t+T}) E_t^Q(x_{t+T}) + cov_t^Q(b_{t,t+T},x_{t+T}).$$

$$F_{t,t+T} = H_{t,t+T} + cov_t^Q(b_{t,t+T},x_{t+T}).$$

The Forward Price: Interpretation

- Forward price = Futures price + covariance term
- Covariance may be positive for many assets
- Covariance is positive for bonds
- For bonds, Forward price > Futures price

An Example: Lognormal Variables

Assume:

 $\bullet \ x_{t+T}$ is lognormal

$$oldsymbol{\phi}_{t,t+T}^* = \phi_{t,t+1}\phi_{t+1,t+2}\phi_{t+2,t+3}...$$
 is lognormal

ullet $b_{t,t+T}$ is lognormal

If $\boldsymbol{x}, \boldsymbol{y}$ are lognormal with

$$egin{aligned} \mu_x, \sigma_x \ \mu_y, \sigma_y \ \sigma_{x,y} \end{aligned}$$

Then

$$E(xy) = E(x)E(y)e^{\sigma_{x,y}}$$

Futures price:

$$egin{aligned} H_{t,t+T} &= E(x\phi) \ &= E(x)E(\phi)e^{\sigma_{x,\phi}} \ &= E(x)e^{\sigma_{x,\phi}} \ &= e^{\mu_x+rac{1}{2}\sigma_x^2}e^{\sigma_{x,\phi}} \ &= e^{\mu_x+rac{1}{2}\sigma_x^2+\sigma_{x,\phi}} \end{aligned}$$

Forward price

$$egin{aligned} F_{t,t+T} &= E(xb\phi) \ &= E(x)E(b\phi)e^{cov(\ln x,\ln b\phi)} \ &= E(x)e^{cov(\ln x,\ln b)+cov(\ln x,\ln \phi)} \ &= e^{\mu_x+rac{1}{2}\sigma_x^2}e^{\sigma_{x,b}+\sigma_{x,\phi}} \ &= e^{\mu_x+rac{1}{2}\sigma_x^2+\sigma_{x,b}+\sigma_{x,\phi}} \end{aligned}$$

The Forward and Futures Prices: Lognormal Variables

Then:

• Futures price:

$$H_{t,t+T}=e^{\mu_x+rac{1}{2}\sigma_x^2+\sigma_{x\phi}}.$$

• Forward price

$$F_{t,t+T} = e^{\mu_x + rac{1}{2}\sigma_x^2} e^{\sigma_{x\phi} + \sigma_{xb}}.$$

The Forward-Futures Bias: Lognormal Variables

$$F_{t,t+T} = H_{t,t+T} \; e^{\sigma_{xb}}$$

$$\sigma_{xb} = \sigma_x \sigma_b \rho_{xb}$$

• For Bonds

$$\rho_{xb} > 0$$

- \bullet σ is non-annualised
- Forward-futures bias increases with maturity of futures

The Forward-Futures Bias: Further Results

- Interest rates: inversely related to bond prices
- Section 6.5: define futures rate by:

$$H_{t,t+T}=e^{-h_{t,t+T}}.$$

• Define forward rate by:

$$F_{t,t+T}=e^{-f_{t,t+T}}.$$

•

$$\ln\left(rac{F_{t,t+T}}{H_{t,t+T}}
ight) = h_{t,t+T} - f_{t,t+T} = \sigma_{xb},$$

- Futures rate > Forward rate
- Important for interest-rate modelling (see ch 7)

The Forward-Futures Bias: Further Results

- For contingent claims (options) bias is magnified
- On LIFFE, Sydney, options traded on futures basis
- See section 6.6

The Forward-Futures Bias: Conclusions

- Forward-Futures bias depends on covariance of asset price with the bond roll-up factor
- Bias is more significant for bond futures
- Forward price > Futures price
- Interest rates: Forward rate < Futures rate
- Bias increases with maturity of futures contract
- Bias is magnified in the case of futures on options