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Abstract

Background Risk and Trading in a Full-Information Rational

Expectations Economy

In this paper, we assume that investors have the same information, but trade due to the
evolution of their non-market wealth. In our formulation, investors rebalance their portfolios

in response to changes in their expected non-market wealth, and hence trade. We assume
an incomplete market in which risky non-market wealth is non-hedgeable and independent

of market risk, and thus represents an additive background risk. Investors who experience
positive shocks to their expected wealth buy more stocks from those who experience less

positive shocks.
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1 Introduction

It has long been a challenge for financial economists to explain trading in the context of

rational expectations asset pricing models. For example, in the complete markets Arrow-
Debreu model, agents choose state-contingent claims on the initial date, but do not trade

at subsequent dates, since they have already purchased claims that hedge against various
future outcomes; thus, there is no need for them to adjust their portfolio holdings as the

state of the world is revealed. This inability to explain trading in a rational model flies
in the face of evidence that there is a large volume of trading in various securities: bonds,

stocks, and increasingly in various types of contingent claims, such as options and futures
contracts.

Several attempts have been made in the literature in the past to explain trading by relaxing
some of the assumptions of completeness of markets and information available to agents in

the economy. One possibility is that when investors have asymmetric information, this gives
them an incentive to trade in order to profit from that information. However, as Grossman

and Stiglitz (1980) point out, the mere act of trading reveals the information possessed
by a particular agent and this gets reflected in market prices. While there may be some

“sand in the gears” introduced if the process of expectations formation is noisy, the central
intuition that prices reflect private information still prevails, reducing the motivation to

trade substantially.

This argument was taken one step further by Milgrom and Stokey (1982) who argue that
when the agents begin with a Pareto optimal allocation relative to their prior beliefs, they
do not trade upon receiving private information, even at equilibria that are less than fully

revealing, since “the information conveyed by price changes swamps each traders private
information.” This surprisingly general result arises because if the initial allocation is Pareto

optimal, there is no valid insurance motive for trading. The willingness of other traders to
take the opposite side implies at least to one trader that his own bet is unfavorable. Hence

no trade is acceptable to all traders. The Milgrom and Stokey propositions rely on two
crucial assumptions: a) that it is common knowledge that when a trade occurs it is feasible

and acceptable to all agents, and b) the agents beliefs are concordant, i.e., that they agree
about how the information should be interpreted.

Another strand of the literature that has provided a motivation for trading is on market

micro-structure, most prominently by Kyle (1985) and Glosten and Milgrom (1985). These
models try to explain the bid-offer spread in markets by appealing to asymmetric informa-
tion. However, a crucial assumption in such models is the existence of noise traders, who

trade for liquidity reasons, and these are not explicitly modeled. Furthermore, it is unclear
why in such models, investors trade for liquidity reasons in risky securities such as stocks,
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rather than trading bonds, unless some market imperfection is assumed. In the Milgrom

and Stokey sense, it must be the case that the allocation in these models is not ex-ante
Pareto optimal, and/or that the beliefs are not concordant.

The broad conclusion from the information-based literature on trading is that the Milgrom

and Stokey “no-trade” result will obtain, unless there is some market imperfection, signifi-
cant deviation from rational expectations equilibria or an exogenous reason to trade, such

as liquidity motivations.

In this paper, we explore an alternative motivation for trading, which is the existence
of non-marketable wealth. Non-marketable wealth may take many forms, but the most

obvious example is wealth arising from labor income. Human capital, which is the value
of future labor income, has been shown in many studies, both theoretical and empirical,
to have an influence on portfolio demand. Another example is housing wealth, which is a

significant component of the portfolios of households. Again, there is a extensive literature
documenting how housing wealth affects portfolio choice and, in turn, feeds back on to

the equilibrium prices of traded assets. The effect of non-market wealth is that it alters
the agents’ demand for the traded assets. An early example of this distortion is the work

of Bodie, Merton and Samuelson (1992) in the context of non-stochastic, positive non-
marketable wealth for an agent with constant relative risk aversion. They show that this

agent acts much like another agent with a lower, but increasing relative risk aversion.

The problem gets more complex when the non-marketable wealth has stochastic properties.
There is a extensive literature on background risk that studies the portfolio behavior of
agents with such non-marketable wealth, whose future cash flows are also stochastic. For

most common utility functions, the existence of background risk makes agents more risk
averse and hence reduces their demand for risky securities. 1 The natural question is how

the changes in the agents’ portfolio decisions affect the portfolio demand and sharing rules
of the marketable securities in equilibrium, a problem first analyzed by Franke, Stapleton

and Subrahmanyam (1998) [FSS].

We extend this framework to consider a multi-period version of the FSS framework. Fol-
lowing the outcome of the background risk in the intermediate period, agents adjust their

holdings of the marketable securities, to be in line with their new level of derived risk aver-
sion in the presence of the updated distribution of background wealth. If the outcomes of

the background risk are heterogeneous across agents, it creates a motivation for trading,
as different agents may wish to adjust their portfolio holdings in opposite directions. We
explore this simple intuition formally for investors with constant relative risk aversion in

our analysis.

1See, for example, Gollier and Pratt (1996), Kimball (1993) and Eekhoudt, Gollier and Schlesinger (1996).
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Section 2 presents the set up of the model and derives the portfolio demand for traded

state-contingent claims. Section 3 describes the evolution of the background risk over time
Section 4 derives optimal demand in the special case where all uncertainty of background

risk is resolved at time 1. Section 5 generalizes the results using an approximation. Section
6 presents our conclusions.

2 A Single-Period Model

In this section we derive the optimal demand for contingent claims for agents in a single-
period equilibrium economy. The results will provide the basic building block for our multi-

period trading model in later sections. The set-up of the model is similar to that in Franke,
Stapleton and Subrahmanyam (1998) [FSS].2 As in FSS, we assume that all agents maximize

the expected utility of wealth, w at the end of a single period. For agent i, wi = xi+yi, where
xi is a set of claims on a single aggregate market cash flow Xa and yi is the nonmarketable

income, e.g. labor income. In general, the non-marketable income yi = ai + ei, where ai is
a constant representing the expected value of non-market income, and ei is an independent,

zero-mean background risk. Each agent solves the following maximization problem:

max
xi

EXa
[Ee[ui(wi)]], s.t. E[φ(Xa)xi] = E[φ(Xa)x̂i0], (1)

given an initial endowment of x, x̂i0. In (1), φ(Xa) is the forward pricing kernel. The budget
constraint states that the forward price of the chosen portfolio of claims has to equal the

forward value of the endowed claims. In FSS, agents have utility functions ui(wi) which
belong to the HARA class, excluding the exponential function. Here, we assume essentially

the same setup with

ui(wi) =
w1−γi

i

1− γi
. (2)

where γi is the coefficient of relative risk aversion. Utility for wealth is a power function,
exhibiting constant relative risk aversion, but the derived utility for xi is of the HARA form,
when the background risk ei does not exist.3

2However, we cannot simply use the results in FSS, since in that paper they do not solve for the Lagrangian
multipliers, see λi below. Hence, their results show that some investors buy, and some sel,l contingent claims
but do not show how many claims are bought or sold.

3Utility is of the Hypobolic Absolute Risk Averse (HARA) class if

ui(wi) =
(wi + ai)

1−γi

1 − γi
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Let λi be the Lagrangian multiplier associated with the budget constraint of investor i. The

Lagrangian multiplier is then:

L = ui(wi) + λi(E[φ(Xa)x̂i0]− E[φ(Xa)xi]). (3)

It follows that the first order condition of the optimization problem is:

Ee[(xi + ai + ei)
−γi ] = λiφ(Xa). (4)

Following Kimball (1990), we can define the precautionary premium ψi(xi) by the relation

Ee[(xi + ai + ei)
−γi ] ≡ [xi + ai − ψi(xi)]

−γi (5)

Hence (xi + ai − ψi)
−γi is the certainty equivalent of Ee(xi + ai + ei)

−γi . Note that ψi

itself will be a function of xi and also depends on the distribution of ei. More specifically,
the function ψ(·) is decreasing and convex. The above result differs slightly from FSS in

that we allow the mean of the background risk to be non-zero. This difference is essential
for our setting because in the dynamic case, analyzed in sections 3 and 4, the mean of the

background risk will be non-zero after the initial date.

Substituting the above certainty equivalence into the first order condition:

[xi + ai − ψi]
−γ = λiφ(Xa), (6)

and it follows that the demand for contingent claims is given by:

xi = (λi)
−1/γiφ(Xa)

−1/γi − ai + ψi. (7)

The optimal demand consists of three separate parts. The first term is the demand if the
expected non-marketable income is zero and the precautionary premium is also zero (i.e. the

background risk is zero). When the expected non-marketable income is positive (negative)
the demand is reduced (increased) in each state to compensate. This explains the second

term. The third term adjusts for the effect of the background risk.

To obtain the optimal demand, we need to solve for λi and the pricing kernel φ(Xa). It
turns out that it is more convenient to use the per capita term X , instead of the aggregate
Xa. Using the market clearing condition 1

I

∑

i xi = X , where I is the number of agents and

assuming γi = γ for all i, we have:4

X = λ−1/γφ(X)−1/γ −A + ψ, (8)

4One could still keep the general form of different γi at this stage, but the resulting expression will be
quite complicated.
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where

ψ =
1

I

∑

i

ψi, (9)

A =
1

I

∑

i

ai, (10)

λ−1/γ =
1

I

∑

i

λ
−1/γ
i . (11)

Note that the aggregate ψ is a function of the state indexed by X and depends also on

the distribution {ei}i=1,...,n. This is essentially a representative agent version of equation
(7), assuming that all the γi’s are the same. Note also that we do not assume that the

background risks are identical across all agents. Indeed, in the subsequent analysis we will
use the fact that ai and ψi vary across agents to create an incentive to trade. Initially, the

agents are all identical in terms of their original risk aversion. However, the realization of
the background risks can differ and consequently the derived risk aversion can be different.
This is the basic intuition behind the trading in our model.

Solving (8) for φ we find

φ(X) = (X + A− ψ)−γλ−1. (12)

Now, substituting the solution of xi in (7) above back into the individual budget constraint

E[φ(X)xi] = E[φ(X)x̂i0],

it follows that:

E[φ(X)x̂i0] = E{φ(X)[λ
−1/γ
i φ(X)−1/γ − ai + ψi]}

= λ
−1/γ
i E[φ(X)

1−1

γ ] − E[φ(X)ai] +E[φ(X)ψi].

Then, we obtain the following:

λ
−1/γ
i =

E[φ(X)(x̂i0 + ai − ψi)]

E[φ(X)
1−1

γ ]
(13)

or λi =







E[φ(X)(x̂i0 + ai − ψi)]

E[φ(X)
1−1

γ ]







−γ

(14)
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Hence, the optimal individual investor demand is (using equation (12)):

xi =
E[φ(X)(x̂i0 + ai − ψi)]

E[φ(X)1−
1

γ ]
φ(X)−

1

γ − ai + ψi(xi) (15)

=
E[(X + A− ψ)−γ(x̂i0 + ai − ψi)]

E[(X + A− ψ)1−γ ]
(X + A− ψ)− ai + ψi. (16)

The expression for the demand for contingent claims in (16) is complex. If there were no
background risk for all investors, ψ would be zero and xi would be linear in X . However, in
general, both ψ and ψi are convex functions implying a non-linear demand function. Also,

the optimal demand is implicit, since ψi is a function of xi for each i.

Again, the optimal individual demand consists of three parts. The first term is linear in
per capita market cash flow. The coefficient depends on the expectation of the individual

precautionary premium. The second term is the adjustment for the non-zero expected
background risk, ai. The third term is the adjustment for individual precautionary premium.

3 The Evolution of Background Risk Over Time

So far, we have assumed that agents face a background risk ei which is resolved at the end
of a single period. As in FSS, ei has a zero mean and is independent of the market cash flow,

X . We now introduce a multiperiod model in which the risk, ei, evolves over time. This
is required to study trading volume in the following sections, since trading is essentially an

intertemporal issue.

There are three dates, t = 0, 1, 2 in the model. These are represented in Figure 1 below.

t = 0

x̂i0, E0(ei) = 0 known

chosen xi0
given φ0(X), ψ0, ψi0

t = 1

ξi = E1(ei) known

chosen xi1
given φ1(X), ψ1, ψi1

t = 2

ηi = ei − ξi known

xi1, ei paid

Fig 1. The timeline
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At time t = 0, each agent is endowed with x̂i0, which is a portfolio of marketable contingent

claims. Also, at t = 0 each agent knows about the distribution of the background risk ei,
which will be fully revealed at t = 2. The agent chooses a portfolio of marketable contingent

claims, at time 0, xi0, to maximize the expected utility of the wealth at time t = 2. The
maximization is given the pricing kernel φ0(X) and the precautionary premium ψi0. Note

that, all the payoffs, which include the payoff from the marketable contingent claims and
the background risk ei, are at t = 2.

At time t = 1, the agent receives information about her background risk, ξi, and revises her

expectation of ei to E1(ei) = ξi. Given this information and the revised distribution of the
background risk in light of the information, ei, she chooses a new portfolio of contingent
claims, given an updated pricing kernel φ1(X) and a revised precautionary premium, ψi1.

Then, at time t = 2, the agent receives more information about her background risk, ηi,
and both payments xi1 and ei are paid to the agent.

Note that, in this model, the agent knows about part of the final payoff from the background

risk at t = 1. Thus, ξi is the conditional expectation at t = 1 of the background risk at
t = 2. However we should emphasize that even though the agent knows about ξi, she cannot

use it directly to trade the contingent claims because the risk is non-marketable. However,
the agent does change her optimal portfolio holdings of marketable claims at t = 1, given

the new information. This is the trading generated in this model.

We next assume that there are two groups of agents, which are indexed as i = m, n. Without
loss of generality, we assume that the two groups are of equal size. For simplicity, we also
assume that ex ante at time t = 0, the distributions of ei are the same for the two groups

i = m, n.

The trading that takes place at t = 1 depends on the cross-sectional realization of ξi across
the agents. If it happens that the outcome ξi is the same for both groups of investors, there

will be no incentive for the two groups to trade with each other. However, if the realizations
of ξi’s are different for the two groups, then there will be trade between them. We proceed

by first considering a special case where the precautionary premia at t = 1 are zero for all
investors. This is the case where there is full resolution of uncertainty about ei at t = 1.

4 A Special Case: Full Resolution of Background Risk at

Time 1

In this section, we investigate the case where all the uncertainty of εi is resolved at t = 1. As
discussed above, in the general case, the demand for contingent claims is an implicit function.
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This is due to the fact that the demand is a function of the precautionary premium, but

the precautionary premium itself is a function of the demand. However, in the special case
where all the uncertainty of the background risk εi is resolved at t = 1, the precautionary

premium, ψi(xi), is zero at time 1. So, in this case, there is an explicit solution for the
optimal demand at time 1.

At time 0, all the investors are identical, and only differ in the resolution of the uncertainty

of ei. Since the investors are identical at t = 0 and since εi has the same distribution for
all i, the investors must hold the same portfolios at t = 0. That implies that the initial

demand xi = X , since X is the average allocation of claims across investors.

Now, let the realization of ξi take on the values: ξi = ak, k = 1, . . . , K. For the two groups,
we assume (ξm, ξn) = (am, an), where am, an ∈ {a1, a2, . . . , aK}. Using (16), with ψi = 0
and x̂i0 = X we have the demand for agent m:

x∗m1 =
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A) − am (17)

which can be written

x∗m1 = X + (am − A)β(X +A) − (am − A), (18)

where

A =
mam + nan

m+ n
(19)

is the aggregate, average shock and

β =
E1[(X +A)−γ ]

E1[(X +A)1−γ ]
(20)

is a constant.5 The demand of m-type agents is made up of three terms. The first term
is the agent’s initial allocation, X . Note that if the shock am equals the aggregate average

shock, A, then m-type agent’s demand is simply the initial allocation and she does not
trade. The second and third terms are dependent on the divergence in the background risk
between each m-type agent m and the market average. The second term is a linear demand

for claims on X . It depends on am −A, the difference between the shock to m-type agent’s
shock, am, and the aggregate average shock, A. Also, the coefficient β depends on A, and

is declining as A increases. The third, constant term, am − A, represents a demand for
risk-free income which balances the increase/decrease in expected non-market wealth.

5For an agent with background income equal to the average A, β is the expected marginal (derived)
utility scaled by the expected (derived) utility.
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Similarly, the demand for agent n is

x∗n1 = X + (an − A)β(X +A) − (an −A), (21)

We now define the trading in contingent claims for an m-type agent, m, zm1, as the absolute

value of the difference between the demand xm,1 and her initial allocation X . From (18)

zm1 ≡ |x∗m1 −X | = |(am − A)β(X + A) − (am − A)|. (22)

Similarly, the trading for an n-type agent is

zn1 ≡ |x∗n1 −X | = |(an − A)β(X +A) − (an −A)|. (23)

The optimal demand and trading of the two types of agents are functions of the exogeneous
variables (am, an, m, n). However, an alternative and moreeconomically meaningful set of
exogeneous variables are the average expected background income A, the difference between

the expected background incomes of the two groups of agents, and the relative number of
m agents, m/n.

For convenience, we therefore define:

ρ ≡
m

n
. (24)

and

∆ ≡ am −A (25)
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Given these definitions we have

Proposition 1 (Demand for Contingent Claims: Full Resolution Case) Assuming
full resolution of the uncertainty of background risk at time 1,

(a) the demand for contingent claims for agents in groups m and n is given by:

x∗m1 = X + ∆β(X +A) − ∆ (26)

x∗n1 = X − ρ∆β(X + A) + ρ∆, (27)

(b) and the trading of the agents is given by:

zm1 = |∆β(X +A) − ∆| = |∆| · |β(X +A) − 1| (28)

zn1 = |ρ∆β(X + A) − ρ∆| = ρ|∆| · |β(X +A) − 1|. (29)

Proposition 1 follows directly from equations (18) and (21), after substituting (24) and
(25). Proposition 1, part a. states the t = 1 demand for state contingent claims on X for

agents in groups m and n. x∗m,1 and x∗n,1 are the demands in the case of full resolution of
uncertainty. The demand for claims in different states depends on ∆, which reflects the

difference between the background income realizations of the two groups of agents am −A,
and A, the average background income realization, and ρ, the relative number of agents in
each group.

Proposition 1, part b. shows the implications of the optimal demands for the trading of

contingent claims. The amount of trading of claims depends upon the heterogeneity of the
two groups of agents, measured by |∆|, and ρ.

We now analyze the comparative static properties of the equilibrium in the following three

corollaries. First, we have:

Corollary 1 [Changes in Heterogeneity and Trading]

Holding the average background income, A, and the relative numbers of agents, ρ fixed:

(a) the effect of a change in the difference, ∆, is given by:

∂x∗m1

∂∆
= β(X +A) − 1 (30)

∂x∗n1

∂∆
= −ρ(β(X + A) − 1), (31)
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(b) the effect of a change in the absolute value of the heterogeneity, |∆|, on the trading is

given by

∂zm1

∂|∆|
= |β(X +A) − 1| ≥ 0 (32)

∂zn1

∂|∆|
= ρ|β(X + A) − 1| ≥ 0, (33)

The corollary follows directly from the optimal demands and trading in Proposition 1. Part

a shows the effect of a change in the difference ∆ = am−A. When the heterogeneity across
agents increases (while holding the average A fixed), the m-type agents will demand more

claims on the high states of X , i.e. ∂x∗m1/∂∆ > 0 for high X , and demand less on the low
states of X . Hence, m-type agents buy more claims on the high states and sell more claims
on the low states, with n-type agents doing the opposite.

The intuition behind this result is as follows. First, suppose that ∆ < 0 and decreases.

The m-type agents are the poorer type and their background risk, am < 0, decreases. The
reaction of m-type agents is to buy more claims on low states and sell more claims on high

states. Conversely, if ∆ increases, the m-type agents will sell more claims on low states and
buy more claims on high states. Alternatively, suppose that ∆ > 0 and increases. In this

case, the poorer n-type agents buy more claims on low states and sells more claims on high
states. Hence, the richer m-type agents again sell more claims on low states and buys more

claims on high states as ∆ increases.

Corollary 1 part a) also implies that there exists a critical contingent claim X∗

1 in which no
trade takes place. This “breakeven state” is given by

X∗

1 ≡
1

β
− A. (34)

If there is an increase in ∆, for those states X > X∗

1 , m-type agents will demand more
claims; and for those X < X∗

1 , m-type agents will demand less claims.

The second part of the Corollary, 1 b), shows that trading of the agents increases when the

heterogeneity increases. Heterogeneity in the realization of expected background income is
the key motivation for agents to trade in this model. Note that in this case, the aggregate

economy is assumed to be the same, since we hold A, the average expected background
income, fixed.

Proposition 1 and Corollary 1 are illustrated in Figure 1, panel A.6 In this case, for simplicity,
we choose A = 0 and ρ = 1. Also ∆ = am −A < 0. The solid line shows the excess demand

6The examples in Figures 1 and 2 are based on a simple 12-state case. Details are provided in Appendix.
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(compared to the endowment) of an m-type agents when ∆ = −1.The agent buys claims in

the low states and sells claims in the high states. The dotted line represents the (symmetric)
excess demand of n-type agents. If the difference falls to ∆ = −3, the demand of m-type

agents changes to that shown by the dashed line. The m-type agents increase their demand
for claims in the low states and increases sales of claims on the high states. This increased

hedging behavior is matched by the n-type agents who reduces their demand for claims on
income in the low states and increases demand for claims in the high states.The dotted-

dashed line shows the excess demand of the n-type agents.

We now assume that there exists some heterogeneity across the two types of agent and
examine the effect of a change in the average background income realization, A on the
trading pattern of the agents. We have the following:

Corollary 2 [Changes in Average Background Income and Trading]

Holding the difference, ∆, and the relative numbers of agents, ρ fixed:

(a) the effect of a change in the average background income, A, on the demand for con-

tingent claims is given by:

∂x∗m1

∂A
= ∆β[1 − (γδ + (1 − γ)β)(X +A)], (35)

∂x∗n1

∂A
= −ρ∆β[1 − (γδ + (1 − γ)β)(X +A)], (36)

where7

δ ≡
E(X + A)−1−γ

E(X +A)−γ
(37)

(b) holding ∆, ρ fixed, if A changes, then the effect on the trading of the agents is:

∂z∗m1

∂A
= sign(∆(X −X∗

1 ))∆β[1− (γδ + (1− γ)β)(X + A)], (38)

∂z∗n1

∂A
= −sign(∆(X −X∗

1 ))ρ∆β[1− (γδ + (1− γ)β)(X +A)]. (39)

Corollary 2a) shows the effect of a marginal change in average background income on the

demand for contingent claims of the two types of agent. To interpret the derivative in (35)
note that δ in (37) is positive, since X +A is positive. Moreover, comparing δ in (37) with

7The term δ is analogous to the β definition earlier in equation (20), except that δ uses the marginal
(derived) utility function instead of the (derived) utility.
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β in (20) we have δ ≥ β.8 It follows that γδ+(1−γ)β > 0. Hence, for ∆ < 0, the derivative

is negative for small X and positive for large X .

The intuition for this result is as follows. Suppose that ∆ < 0 and A falls. Since the m-
type agents are poorer in prospects, they are relatively more affected by the fall in average

expected background income and buy claims on low states from the n-type agents who are
relatively less affected by the shock. They buy these low-state claims and sell claims on the

higher states.

Another way of interpreting the result is in terms of a wealth effect and a substitution effect
of the change in A. With an increase in A, the wealth effect for all agents is the same,

the greater the wealth, the lower the risk aversion, pushing up the demand for all claims.
However, the substitution effect is different for the two groups, depending on which group
experiences the bigger relative increase in wealth. With ∆ < 0 and hence am < an, the

effect on am is stronger, resulting in an increase in demand for low state claims fromm-type
agents. This is matched by a decrease in the demand for such claims from n-type agents.

[The description and the panels in the figures have to be rearranged so that they are in the

same sequence as in the corollaries.]

Corollary 2b) summarizes the effect of a small change in average background income on
the trading activity of the two types of agent. For X < X∗

1 , the term sign(∆(X − X∗

1 ))

is positive (since ∆ < 0). The final term in square brackets is positive for small X and
negative for larger X . Hence, the trading in this region may increase or decline. However,

for X > X∗

1 , the sign of (∆(X−X∗

1 ) is negative and it follows that trading of claims in this
region increases.

Corollary 2a) is illustrated in Figure 1, panel C, for the case where the average expected
background risk of agents changes from A = 0 to A = −1. When A = 0, the demands

for claims of the m-type and n-type agents are shown by the solid line and the dotted line
respectively. When A changes to A = −1, the demands are shown by the steeper dashed

and dotted-dashed lines, respectively. With A = 0, the cross-over state at which no trade
takes place is X∗

1 (0). With A = −1, the cross-over state at which no trade takes place falls

to X∗

1 (−1). The effect of the fall in A is to steepen the linear demand for contingent claims.
The m-type agents require more claims on the low states and these are supplied by the

relatively rich n-type agents.

The effect on the level of trading of such a finite change in A is more complex, however, as
illustrated in panel D of Figure 1. There are two levels of X at which the trading level is
unchanged as A changes. These are denoted X∗

2 and X∗∗

2 . From the Figure, we see that

8This follows from the Cauchy-Schwartz inequality, as shown in the Appendix.
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for X < X∗

2 and X > X∗∗

2 , trading increases with a fall in A. However, for X∗

2 < X < X∗∗

2

trading falls, with a reduction in A.

Finally, we study the comparative statics results from the change in the relative number of
agents: ρ = m/n. We have the following:

Corollary 3 [Changes in the Relative Numbers of Agents and Trading]

Holding the average expected background income, A, and the difference, ∆ fixed, i.e. holding
A, am fixed:

(a) The effect of a change in the relative number of agents, ρ, is given by:

∂x∗m1

∂ρ
= 0 (40)

∂x∗n1

∂ρ
= ∆(1− β(X +A)). (41)

(b) The effect of a change in ρ on the trading of m-type agents is zero, while the trading
of n-type agents will be affected as follows:

∂z∗n1

∂ρ
= |∆(1− β(X + A))| > 0. (42)

The intuition for this trading behavior is as follows. When am, A are fixed, agent m’s

demand will not change. However, since the proportion ρ = m
n increases, there must be

fewer n-type agents per m-type agent. Hence, the trading of each n-type agent increases.

The result in Corollary 3a) is illustrated in Figure 1, panel B. The solid line and the dotted

line shows the excess demand for agents of type m and n respectively, when ρ = 1. When ρ
increases, the steepness of the n-type agent’s demand curve increases to that shown by the

dotted-dashed line for the case where ρ = 2.

5 The General Case: Partial Resolution of Uncertainty at

t = 1

As we saw earlier, in the general case where there is unresolved background risk at time

1, the optimal demand, xi, cannot be solved analytically in closed-form. In the previous
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section, the problem above was solved by considering a special case where all background risk

was resolved at time 1, and the precautionary premium, ψi, was zero. We now analyze the
general case, using an alternative approach involving an approximation for the precautionary

premium.

5.1 An Approximation for the Precautionary Premium.

At time 1, the residual background risk is ηi with variance σ2
η, which we will assume is

the same across agents.9 From Gollier (2001), the precautionary premium, ψi, can be
approximated by10

ψi(xi) ≈
1

2

(

−
u′′′i (xi + ai)

u′′i (xi + ai)

)

σ2
η (43)

for a small background risk. This is analogous to the Arrow-Pratt approximation for the

risk premium, using the marginal utility function instead of the original utility function.
For the special case where u(·) is CRRA analyzed earlier, we have

ψi(xi) ≈
(1 + γ)σ2

η

2(xi + ai)
. (44)

Thus, we have an approximate solution for ψi as a function of xi.
11

9Generalizing this to the case of heterogeneity of variances across agents adds notational complexity
without yielding any additional insights.

10See Gollier (2001), p. 237.
11As we can see, the approximation satisfies all the properties for the precautionary premium, ψi, as stated

in FSS:

ψi > 0,
∂ψi

∂x
< 0,

∂2ψi

∂x2
> 0,

∂ψi

∂σ
> 0,

∂2ψi

∂σ∂x
< 0,

∂3ψi

∂σ∂x2
> 0.

Also, the approximation has additional implications with respect to the change in the expectation of the
background risk ai:

∂ψi

∂ai

< 0,
∂2ψi

∂a2

i

> 0

Finally, the cross derivatives with respect to σ and ai are similar to those for σ and xi.



Background Risk and Trading 16

5.2 Optimal demand given the approximation for ψi

From equation (16), the optimal demand for members of the two groups of agents is:

xm1 =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1) − am + ψm1 (45)

xn1 =
E1[(X +A− ψ1)

−γ(X + an − ψn1)]

E1[(X +A− ψ1)1−γ ]
(X +A − ψ1) − an + ψn1, (46)

where

ψm1 =
(1 + γ)σ2

η

2(xm1 + am)

ψn1 =
(1 + γ)σ2

η

2(xn1 + an)

ψ1 =
1

1 + ρ
(ρψm1 + ψn1)

The optimal demands of the two types of agent are implicit in equations (45) and (46).

However, in the appendix we show, using approximations, that the following proposition
holds in the general case:

Proposition 2 (Demand for Contingent Claims: General Case) The optimal demand
of the two groups of agents in general is:

xm1 = x∗m1 +
(1+γ)σ2

η

2

(

B1m(X +A) + B2m
1

(X+A)

)

(47)

xn1 = x∗n1 +
(1+γ)σ2

η

2

(

B1n(X +A) +B2n
1

(X+A)

)

, (48)

where

B1m =
βδ∆

(1 + ∆β)(1− ρ∆β)
{β(2 + (1 − ρ)∆β) + γ(1 + (1− ρ)∆β)(θ− β)},

B2m =
−∆β[2 + (1 − ρ)∆β]

(1 + ∆β)(1 − ρ∆β)
,

and12

θ =
E1[(X + A)−2−γ ]

E1[(X + A)−1−γ ]

and when ρ = 1, B1n = −B1m and B2n = −B2m.

12Again θ is analogous to δ and β, in that we start with the second derivative of the (derived) utility
function instead of the utility function as the basis.
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Proof See Appendix.

The main properties of the optimal demand and trading can be analyzed using x∗m1, x
∗

n1,

the full-resolution demands for agent m and n respectively, as the base case. Recall that
in the special case of full resolution, x∗m1 has the property that when ∆ > 0, x∗m1 − X ,

the amount of trading, is an upward sloping linear function of states X ; and when ∆ < 0,
x∗m1 −X is a downward sloping linear function of states X .

The additional effect in the general case comes from two terms: one from the linear term

B1m(X +A), and the other from the nonlinear term B2m/(X+A). From the above propo-
sition, note that the coefficients B1m, B2m are still functions of ∆, the signed measure of

heterogeneity across the agents’ background income. However, the relationship is not linear
anymore. To see this in more detail, consider the special case of ρ = 1 when there are equal
numbers of agents in the two groups. Then, the two coefficients are:

B1m =
βδ∆

(1 + ∆β)(1− ∆β)
{2β + γ(θ − β)},

=
βδ∆

1 − ∆2β2
{2β + γ(θ− β)}

B2m =
−2∆β

(1 + ∆β)(1− ∆β)

=
−2∆β

1 − ∆2β2

Given θ > β, the coefficient of the additional linear term, B1m, is proportional to ∆/(1 −
∆2β2). The coefficient of the nonlinear term, B2m, is proportional to −∆/(1−∆2β2). Thus,

the nonlinear term can be upward or downward sloping in the state X , depending on the
sign of B2m. However, the term 1/(X + A) is always a decreasing and convex function of

the states X , it follows that:
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Corollary 4 [ Convexity of the Contingent Claim Demand]

Assume equal numbers of agents, ρ = 1 and ∆ < 0. The demand of each m-type agent is a

decreasing convex function of X .

Proof

From equation (26),
x∗m1 = X + ∆β(X +A) − ∆,

or

x∗m1 + am = (X + A)(1 + ∆β).

Now, X + A is positive by assumption. Also, we must have x∗m1 + am > 0 and it follows

that (1 + ∆β) > 0.

The coefficient

B2m =
−2∆β

(1 + ∆β)(1− ∆β)
.

From its definition in (20), β > 0 so the numerator of B2m is positive, given ∆ < 0. Also
the factor (1−∆β) in the denominator is positive for the same reason. Since (1+∆β) > 0,

it follows that B2m > 0. Finally, since 1/(X + A) is a declining, convex function of X , the
corollary follows.

Corollary 4 shows how the convexity of the demand for contingent claims is affected by the

expected background income of agents. Also, since the β coefficient is a function of the
risk aversion parameter γ, it shows that in the CRRA economy, γ controls the degree of

convexity of the demand function.



Background Risk and Trading 19

Intuitively, agent m will either long or short a put-like option on the state X . Let us study

these conditions in more detail. The condition for the long position is when B2m > 0.
This is the case when either ∆ < 0, 1− ∆2β2 > 0 or ∆ > 0, 1− ∆2β2 < 0. If, for example,

β ∈ (0, 1), it follows that under the condition ∆ ∈ (−1/β, 0)∪(1/β,∞), B2m > 0. Similarly,
under the condition ∆ ∈ (−∞,−1/β) ∪ (0, 1/β), B2m < 0.13

Combining this with the linear demand from B1m, it follows that, in addition to the linear

demand from the full resolution case, the effect of the residual risk on the demand of agent
is either a downward sloping convex or an upward sloping concave function of the states X .

To summarize, the overall excess demand function of agent m, xm1−X , can be characterized

as follows:

• When ∆ > 0, xm1 −X will be an upward sloping linear function of X plus:

– a downward sloping convex function of X when ∆ > 1/β;

– an upward sloping concave function of X when 1/β > ∆ > 0;

• When ∆ < 0, xm1 −X will be a downward sloping linear function of X plus:

– a downward sloping convex function of X when −1/β < ∆ < 0;

– an upward sloping concave function of X when ∆ < −1/β;

In Figure 2, we plot the optimal demand for an example. In this example, A = 0 and
ρ = 1. In panel A, the optimal demand xm1 is a nonlinear function of states X . We plot

the two additional terms (over the demand in the special case) for agent m and agent n in
panel B. In this example, −1/β < ∆ < 0. Thus the two additional effects are downward

sloping convex functions of X , while B1n(X + A) + B2q/(X + A) is an upward sloping
concave function. A symmetric argument implies that the later corresponds to the case for

1/β > ∆ > 0. The intuition for this example is that agent m is the relatively “poor” agent
because ∆ < 0. The additional terms (relative to the special case) will induce agent m to

demand more in the lower states, while reducing demand in the higher states.

6 Conclusion

There is an extensive literature on background risk, which arises from stochastic cash flows

generating non-marketable wealth. Since this risk cannot be directly hedged, it affects the

13β > 1 case is very similar: There are still four regions of ∆ which result in four different patterns of
demands. The only differences are the boundaries between the regions.
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derived risk aversion of the individual agent. Generally speaking, as documented by several

researchers and synthesized by Gollier (2001), in the presence of background risk, agents
generally become more risk-averse in their derived utility functions, and thus, behave like

a more risk-averse agent would, in the absence of such a risk. This, in turn, influences the
demand for insurance.

There has been rather less attention devoted to the pricing of securities and sharing rules

in equilibrium, when agents in the economy face background risk. A notable early paper is
by FSS, who analyze the equilibrium in such an economy, and derive the portfolio demand

of individual agents in this equilibrium. The agents take into account their non-marketable
background risk in optimally determining their demand for the marketable assets. Specifi-
cally, FSS show that agents with background risk depart from the linear sharing rule that

characterizes behavior in complete markets, and may buy or sell non-linear contingent claims
such as options.

In this paper, we take the presence of background risk and its influence on risk taking in

a different direction. We explore how the prices of assets are determined in equilibrium by
the interplay of portfolio demands across agents in the economy, which take into account

the background risks they face. If the agents face different background risks, it is reasonable
to expect that their portfolio demands will differ: this is the argument first made by FSS.

We extend this argument to the multi-period setting and derive the changes in the portfolio
demand of different agents as the background risk is revealed over time. To the extent that

these changes differ across agents, it establishes a motive for trading, even in the presence
of symmetric (full) information across agents.

The equilibrium we obtain turns out to be fairly complex, since portfolio demands depend
on the changed derived risk aversion of agents in the presence of background risk, which

in turn, depends on the portfolio holdings. We break this circularity by considering special
cases of the evolution of background risk, as well as by using some approximations. We

confirm these results by numerical computations.

We have thus been able to derive a theory of trading in the presence of full information,
without running afoul of the powerful no-trade results of Grossman and Stiglitz (1980) and

milgrom and Stokey (1982) in the context of asymmetric information models. We believe
our theory can be extended in several directions to separate the trading in linear (stocks

and bonds) versus non-linear (options) claims. Potentially, our theory is testable, if one can
quantify the influences of background risks such as human and housing wealth. This could
be of interest to researchers in asset pricing, where the focus is mainly on returns, but could

also be related to the aspects of trading analyzed in this paper.
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7 Appendix: Derivation of Demand Equations: The General

Case

For convenience define:

x̂m1 ≡ xm1 + am

x̂n1 ≡ xn1 + an.

Then, it follows that the optimal demand for agent m can thus be written as:

x̂m1 =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1) + ψm1,

where

ψm1 =
(1 + γ)σ2

η

2x̂m1

ψn1 =
(1 + γ)σ2

η

2x̂n1

ψ1 =
(1 + γ)σ2

η

2(1 + ρ)
(
ρ

x̂m1
+

1

x̂n1
)

=
(1 + γ)σ2

η

2x̂m1x̂n1

[

1

1 + ρ
(ρx̂n1 + x̂m1)

]

=
(1 + γ)σ2

η

2x̂m1x̂n1

[

X + A+
1 − ρ

1 + ρ
(x̂m1 − x̂n1)

]

=
(1 + γ)σ2

η

2x̂m1x̂n1
(X + A)(1 + ∆x̂m1x̂n1

),

and

∆x̂m1x̂n1
≡

1− ρ

1 + ρ
·
x̂m1 − x̂n1

X +A

=
1− ρ

1 + ρ
·
(xm1 − xn1) + (am − an)

X + A

Similarly, the optimal demand for agent n is

x̂n1 =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1) + ψn1,
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The required approximations are:

(X + A− ψ1)
−γ =

[

X +A −
(1 + γ)σ2

η

2

X +A

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

]

−γ

= (X + A)−γ

[

1 −
(1 + γ)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

]

−γ

≈ (X + A)−γ

[

1 +
γ(γ + 1)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

]

,

where in the last step we use the approximation that σ2
η/(x̂m1x̂n1) is small.

Similarly, we obtain the approximation:

(X + A− ψ1)
1−γ ≈ (X + A)1−γ

[

1 −
(1 − γ2)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

]

.

Thus:

1

E1

{

(X +A)1−γ
[

1 −
(1−γ2)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)
]} ≈

1

E1[(X + A)1−γ ]















1 +
E1

[

(1−γ2)σ2
η(X+A)1−γ

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

]

E1[(X +A)1−γ ]















Substituting these into the optimal demand function, it follows:

x̂m1 ≈ E1

[

(X + A)−γ

(

1 +
γ(γ + 1)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)(

X + am −
(1 + γ)σ2

η

2x̂m1

)]

1

E1[(X + A)1−γ ]









1 +
E1

(

(1−γ2)σ2
η(X+A)1−γ

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)

E1[(X + A)1−γ ]









(

X +A−
(1 + γ)σ2

η(X +A)

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)

+
(1 + γ)σ2

η

2x̂m1
.

Then, under our assumption the terms σ4/x̂4
m1, σ

4/x̂3
m1x̂n1, σ

4/x̂2
m1x̂

2
n1 → 0. Thus we have:

x̂m1 ≈ E1

[

(X +A)−γ

(

X + am +
γ(1 + γ)σ2

η(X + am)

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

) −
(γ + 1)σ2

η

2x̂m1

)]

(X + A)

E[(X +A)1−γ ]
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







1 −
(1 + γ)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

) +
E1

(

(1−γ2)σ2
η(X+A)1−γ

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)

E1[(X + A)1−γ ]









+
(1 + γ)σ2

η

2x̂m1

=

{

E1[(X + A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2

η(X + A)

2E1[(X +A)1−γ ]

[

E1

(

γ(X +A)−γ(X + am)

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)

− E1

(

(X +A)−γ

x̂m1

)]}



1 −
(1 + γ)σ2

η

2x̂m1x̂n1
(1 + ∆x̂m1x̂n1

) +
(1 + γ)σ2

η

2

E1

(

(1−γ)(X+A)1−γ

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)
)

E1[(X + A)1−γ ]



+
(1 + γ)σ2

η

2x̂m1

Further, combining terms in the above expression, it follows:

x̂m1 ≈
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2

η

2E1[(X + A)1−γ ]
(X +A)

[

E1

(

γ(X + A)−γ(X + am)

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)

−E1

(

(X +A)−γ

x̂m1

)]

−
(1 + γ)σ2

η

2x̂m1x̂n1

E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)(1 + ∆x̂m1x̂n1

)

+
(1 + γ)σ2

η

2

E1

(

(1−γ)(X+A)1−γ

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)
)

E1[(X + A)1−γ ]

E1[(X + A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A) +

(1 + γ)σ2
η

2x̂m1

=
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2

η

2E1[(X + A)1−γ ]

{[

E1

(

γ(X +A)−γ(X + am)

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)

)

− E1

(

(X + A)−γ

x̂m1

)

+ E1

[

(X +A)−γ((X + am)
]

E1

(

(1−γ)(X+A)1−γ

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

)
)

E1[(X + A)1−γ ]



 (X + A)

− E1[(X +A)−γ(X + am)]
(X +A)

x̂m1x̂n1
(1 + ∆x̂m1x̂n1

) +
E1((X +A)1−γ)

x̂m1

}

Finally, the approximate explicit solution is found by substituting x̂m1 = x̂∗m1, x̂n1 = x̂∗n1

to obtain

x̂m1 ≈ x̂∗m1 +
(1 + γ)σ2

η

2E1[(X +A)1−γ ]

{[

E1

(

γ(X +A)−γ(X + am)

x̂∗m1x̂
∗

n1

(1 + ∆x̂∗

m1
x̂∗

n1
)

)

−E1

(

(X +A)−γ

x̂∗m1

)



Background Risk and Trading 25

+ E1

[

(X +A)−γ(X + am)
]

E1

(

(1−γ)(X+A)1−γ

x̂∗

m1
x̂∗

n1

(1 + ∆x̂∗

m1
x̂∗

n1
)
)

E1[(X +A)1−γ ]



 (X +A)

− E1[(X +A)−γ(X + am)]
(X +A)

x̂∗m1x̂
∗

n1

(1 + ∆x̂∗

m1
x̂∗

n1
) +

E1((X +A)1−γ)

x̂∗m1

}

= x̂∗m1 +
(1 + γ)σ2

η

2

{

B1m(X +A) −
E1[(X + A)−γ(X + am)](X + A)

E1((X + A)1−γ)x̂∗m1x̂
∗

n1

(1 + ∆x̂∗

m1
x̂∗

n1
) +

1

x̂∗m1

}

= x̂∗m1 +
(1 + γ)σ2

η

2

[

B1m(X + A) + B2m
1

(X + A)

]

,

where

B1m =
1

E1[(X + A)1−γ ]

[

E1

(

γ(X +A)−γ(X + am)

x̂∗m1x̂
∗

n1

(1 + ∆x̂∗

m1
x̂∗

n1
)

)

− E1

(

(X +A)−γ

x̂∗m1

)

+ E1

[

(X + A)−γ(X + am)
]

E1

(

(1−γ)(X+A)1−γ

x̂∗

m1
x̂∗

n1

(1 + ∆x̂∗

m1
x̂∗

n1
)
)

E1[(X + A)1−γ ]



 ,

B2m =
E1[(X + A)1−γ ]

E1[(X + A)−γ(X + am)]
−

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + an)]
(1 + ∆x̂∗

m1
x̂∗

n1
).

Using the expression for x∗m1, x
∗

n1, we can obtain an explicit expression for ∆x̂∗

m1
x̂∗

n1
:

∆x̂∗

m1
x̂∗

n1
=

1 − ρ

1 + ρ

(x∗m1 + am) − (x∗n1 + an)

X +A

=
1 − ρ

1 + ρ

E1[(X+A)−γ(X+am)]
E1[(X+A)1−γ]

(X +A) − E1[(X+A)−γ(X+an)]
E1[(X+A)1−γ ]

(X +A)

X +A

=
1 − ρ

1 + ρ

(am − an)E1[(X + A)−γ ]

E1[(X +A)1−γ ]

=
(1 − ρ)∆E1[(X +A)−γ ]

E1[(X +A)1−γ ]

= (1 − ρ)∆β.

We can further simplify the explicit expression for the two coefficients B1m, B2m. Note that:

B2m =
E1[(X + A)1−γ ]

E1[(X + A)−γ(X + am)]
−

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + an)]
(1 + ∆x̂∗

m1
x̂∗

n1
),

where

∆x̂∗

m1
x̂∗

n1
=

(1 − ρ)∆E1[(X + A)−γ ]

E1[(X +A)1−γ ]
= (1 − ρ)∆β.
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Furthermore:

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]
=

E1[(X + A)1−γ ]

E1[(X +A)−γ(X +A+ am − A)]

=
E1[(X +A)1−γ ]

E1[(X +A)1−γ ] + ∆E1[(X + A)−γ ]

=
1

1 + ∆β

E1[(X + A)1−γ ]

E1[(X + A)−γ(X + an)]
=

E1[(X + A)1−γ ]

E1[(X +A)−γ(X +A+ an − A)]

=
E1[(X + A)1−γ ]

E1[(X +A)1−γ ] − ρ∆E1[(X +A)−γ ]

=
1

1 − ρ∆β

It follows that:

B2m =
1

1 + ∆β
−

1 + (1− ρ)∆β

1 − ρ∆β

=
1 − ρ∆β − [1 + (1 − ρ)∆β](1 + ∆β)

(1 + ∆β)(1− ρ∆β)

=
1 − ρ∆β − (1 + ∆β) − ∆β(1 − ρ)(1 + ∆β)

(1 + ∆β)(1− ρ∆β)

=
−∆β[1 + ρ+ 1 − ρ+ ∆β − ρ∆β]

(1 + ∆β)(1− ρ∆β)

=
−∆β[2 + (1 − ρ)∆β]

(1 + ∆β)(1 − ρ∆β)

Now for B2m, note that:

x̂∗m1 =
E1[(X +A)−γ(X + am)]

E1[(X + A)1−γ
(X +A)

= (1 + ∆β)(X +A),

x̂∗n1 =
E1[(X +A)−γ(X + an)]

E1[(X + A)1−γ
(X + A)

= (1 − ρ∆β)(X + A).

Then
x̂∗m1x̂

∗

n1 = (1 + ∆β)(1− ρ∆β)(X +A)2.
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It follows that:

B1m =
1

E1[(X + A)1−γ ]

{

1 + (1 − ρ)∆β

(1 + ∆β)(1− ρ∆β)
γE1[(X +A)−2−γ(X +A+ ∆)]

−
E1[(X +A)−1−γ ]

1 + ∆β
+

1 + (1− ρ)∆β

(1 + ∆β)(1− ρ∆β)
(1− γ)E1[(X + A)−1−γ ](1 + ∆β)

}

=
1 + (1 − ρ)∆β

(1 + ∆β)(1 − ρ∆β)
γ

[

E1[(X +A)−1−γ ]

E1[(X +A)1−γ ]
+ ∆

E1[(X +A)−2−γ ]

E1[(X +A)1−γ ]

]

−
1

1 + ∆β

E1[(X +A)−1−γ ]

E1[(X +A)1−γ ]
+

1 + (1 − ρ)∆β

1 − ρ∆β
(1 − γ)

E1[(X +A)−1−γ ]

E1[(X +A)1−γ ]

Define

θ ≡
E1[(X +A)−2−γ ]

E1[(X +A)−1−γ ]
.

We can rewrite the following:

E1[(X +A)−1−γ ]

E1[(X +A)1−γ ]
=

E1[(X +A)−1−γ ]

E1[(X + A)−γ ]

E1[(X + A)−γ ]

E1[(X + A)1−γ ]

= βδ

E1[(X +A)−2−γ ]

E1[(X +A)1−γ ]
=

E1[(X +A)−2−γ ]

E1[(X +A)−1−γ ]

E1[(X + A)−1−γ ]

E1[(X +A)−γ ]

E1[(X +A)−γ ]

E1[(X +A)1−γ ]

= βδθ.

Hence

B1m =
1 + (1 − ρ)∆β

(1 + ∆β)(1− ρ∆β)
γ [βδ + ∆βδθ]

−
1

1 + ∆β
βδ +

1 + (1− ρ)∆β

1 − ρ∆β
(1− γ)βδ

=
βδ

(1 + ∆β)(1− ρ∆β)
[(1 + (1− ρ)∆β)γ(1+ ∆θ) −

−(1 − ρ∆β) + (1 + ∆β)(1 + (1− ρ)∆β)(1− γ)]

=
βδ

(1 + ∆β)(1− ρ∆β)
{(1 + (1− ρ)∆β)[γ(1+ ∆θ) + (1 + ∆β)(1− γ)]− (1 − ρ∆β)}

=
βδ

(1 + ∆β)(1− ρ∆β)
{(1 + (1− ρ)∆β)[(1 + ∆β) + γ∆(θ − β)] − (1 − ρ∆β)}

=
βδ

(1 + ∆β)(1− ρ∆β)
{(1 + (1− ρ)∆β)(1 + ∆β) − (1− ρ∆β)

+γ(1 + (1− ρ)∆β)∆(θ− β)}
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=
βδ∆

(1 + ∆β)(1− ρ∆β)
{β(2 + (1− ρ)∆β) + γ(1 + (1 − ρ)∆β)(θ− β)}
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Panel A: Changing ∆ Panel B: Changing ρ
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Panel C: Demand for changing A Panel D: Trading for changing A
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Figure 1: Special Case

This figure shows the comparative static results for the special case analyzed in section ():
Panel A denotes the optimal excess demand of the two agents when there is a change in ∆.
Here, A = 0 and ρ = 1. The solid line is for x∗m1 −X with ∆ = −1; The dashed line is for

x∗m1 −X with ∆ = −3; The dotted line is for x∗n1 −X with ∆ = −1; and the dotted dashed
line is for x∗n1 −X with ∆ = −3.

Panel B denotes the optimal excess demand of the two agents when there is a change in ρ,
holding A,∆ fixed. The solid line (and the overlapping dashed line) is for x∗m1; The dotted

line is for x∗n1 −X with ρ = 1; The dotted dashed line is for x∗n1 −X with ρ = 2.
Panel C denotes the optimal excess demand of the two agents when there is a change in A,

holding ∆ = −0.5 and ρ = 1. The solid line is for x∗m1 −X with A = 0; The dashed line is
for x∗m1 −X with A = −1; The dotted line is for x∗n1 −X with A = 0; The dotted dashed

line is for x∗n1 −X with A = −1.
Panel D denotes the trading by agent m when there is a change in A, holding ∆ = −0.5
and ρ = 1. The solid line is the trading zm1 with A = 0; The dashed line is the trading zm1

with A = −1.
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Panel A: Demand xm1: U shape Panel B: Additional Nonlinear Terms
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Panel C: Demand xm1: Decreasing Panel D: Additional Nonlinear Terms
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Figure 1: This shows the demands for general case: Panel A denotes the optimal demand
of agent m. Panel B denotes the additional terms of agent m and n. In these two

panels, X goes from 2 to 9.8 with 0.2 interval (so totally 40 states). Other parameters are
γ = 2,∆ = −3, ση = 0.5. Panel C denotes the optimal demand of agent m. Panel D

denotes the additional terms of agent m and n. In these two panels, X goes from 2 to 13

with interval 1 (so totally 12 states). Other parameters are γ = 2,∆ = −3, ση = 0.5.


